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Coherence Tomography
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Précis: A deep learning model trained on macular OCT imaging
studies detected clinically significant functional glaucoma pro-
gression and was also able to predict future progression.

Objective: To use macular optical coherence tomography (OCT)
imaging to predict the future and detect concurrent visual field
progression, respectively, using deep learning.

Design: A retrospective cohort study.

Subjects: A pretraining data set was comprised of 7,702,201 B-scan
images from 151,389 macular OCT studies. The progression detection
task included 3902 macular OCT imaging studies from 1534 eyes of
828 patients with glaucoma, and the progression prediction task
included 1346 macular OCT studies from 1205 eyes of 784.

Methods: A novel deep learning method was developed to detect
glaucoma progression and predict future progression using macular
OCT, based on self-supervised pretraining of a vision transformer
(ViT) model on a large, unlabeled data set of OCT images. Glaucoma
progression was defined as a mean deviation (MD) rate of change of
< —0.5 dB/year over 5 consecutive Humphrey visual field tests, and
rapid progression was defined as MD change < —1 dB/year.

Main Outcome Measures: Diagnostic performance of the ViT model
for prediction of future visual field progression and detection of
concurrent visual field progression using area under the receiver
operating characteristic curve (AUC), sensitivity, and specificity.

Results: The model distinguished stable eyes from progressing eyes,
achieving an AUC of 0.90 (95% CI, 0.88-0.91). Rapid progression was
detected with an AUC of 0.92 (95% CI, 0.91-0.93). The model also
demonstrated high predictive ability for forecasting future glaucoma
progression, with an AUC of 0.85 (95% CI 0.83-0.87). Rapid pro-
gression was predicted with an AUC of 0.84 (95% CI 0.81-0.86).

Conclusions: A deep learning model detected clinically significant
functional glaucoma progression using macular OCT imaging
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studies and was also able to predict future progression. Early
identification of patients undergoing glaucoma progression or at
high risk for future progression may aid in clinical decision-making.

Key Words: deep learning, glaucoma, macular OCT, visual field
progression
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Vision loss due to primary open angle glaucoma (POAG)
is a common cause of preventable, irreversible blindness
globally.! However, the insidious disease course and the
resulting difficulty in ascertaining progression pose sig-
nificant challenges to glaucoma management.” Close con-
sideration of the individual patient’s disease trajectory is
needed to differentiate between stable and worsening dis-
ease. Clinical decision-making in glaucoma draws, in part,
upon both structural and functional assessments through
optical coherence tomography (OCT) imaging and standard
automated perimetry (SAP), respectively.>* Integration of
structural and functional changes across the disease course is
needed to inform decisions regarding the optimal medical or
surgical interventions required to maximize the likelihood of
the preservation of vision.

Structural and functional measures of disease progression
may not align. This is particularly important in early glaucoma
before significant retinal ganglion cell (RGC) loss has occurred,
as well as later in the disease process when extensive RGC loss
renders evaluations of retinal nerve fiber layer (RNFL) thick-
ness less informative.>7 Moreover, measurement of functional
decline with SAP is limited by inter-test variability.® As a result,
multiple tests are often necessary to reliably detect progression,
which may contribute to delayed initiation of more intensive
treatment.”? Thus, early identification of structural changes
that reliably indicate ongoing functional progression is desir-
able to enable a more objective and reliable determination of
clinically significant progression.

Macular OCT has been established as an important
adjunctive imaging modality in glaucoma management.!1:12
Due to the high density of RGCs within the macula, OCT
imaging of this region has the potential to reveal early
glaucomatous changes in cong'unction with optic nerve head
and peripapillary imaging.!>1* While previous studies have
developed and validated deep learning methodologies ana-
lyzing fundus photography for this task,'> the use of deep
learning to analyze OCT images may provide new insights
linking structural and functional changes in the disease
process. However, the ability of deep learning to detect and
predict structural changes in macular OCT corresponding to
functional progression remains to be established.
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One promising approach for the analysis of macular
OCT images is self-supervised learning, which is similar to
unsupervised learning in that it allows for model pretraining
using large amounts of unlabeled data. However, in contrast
to unsupervised methods, self-supervised methods inde-
pendently extract information from training data. This
enables the development of generalizable, task-agnostic
models, which can then be adopted to different downstream
prediction tasks. Vision transformer models trained using
self-supervised learning have attained state-of-the-art results
on image classification benchmarks,!® and there is great
potential for an ophthalmology-specific pretrained model to
generalize to downstream tasks such as glaucoma pre-
diction. The aim of the present study was to examine the
feasibility of using a vision transformer (ViT)-based model
pretrained using a self-supervised learning method called
self-distillation with no labels (DINO),'® to both predict
glaucomatous visual field progression and detect concurrent
visual field progression using only macular OCT images.

METHODS

Longitudinal Data Set

All data were abstracted from a deidentified, longi-
tudinal, institutional database containing macular spectral
domain OCT, Humphrey visual field (HVF), and clinical data
for over 35,000 patients from 2010 to 2018. All macular OCT
scans, regardless of scan range, were used for model pre-
training, as detailed below. Macular OCT scans were
obtained using the Spectralis platform (Heidelberg Engi-
neering, Heidelberg, Germany). Given the scale of the data
set and the demonstrated ability of self-supervised learning
algorithms to learn robust image features from noisy data,!’
image quality control was not performed beyond that done
for initial entry into the database. HVF tests were performed
using the Humphrey Field Analyzer 3 perimeter (Carl Zeiss
Meditec, Dublin, CA), with the standard Swedish interactive
thresholding algorithm (SITA Standard) method.

Model Pretraining Process

All available macular OCT images, with the exception
of a held-out test set described below, were used to pretrain
a ViT model using DINO, a method for self-supervised
learning through knowledge distillation introduced by
Caron et al.!® Figure 1 summarizes the DINO pretraining
method. In brief, a student and a teacher ViT network are
trained in parallel to unify their outputs over local and
global image crops, respectively. This training process
guides the models towards learning correspondences
between local and global features in a self-supervised fash-
ion. A ViT model trained in this way encodes OCT image
data into a numeric form, also known as an embedding,
which can then be used to perform downstream classi-
fication and prediction tasks.

Individual B-scans were resized to 384Xx496 using
bicubic interpolation and were normalized to mean 0.5 and
SD 0.5. Random contrast, brightness, and horizontal flip
transformations were applied as part of the DINO image
augmentation pipeline. ViT models with a hidden size of
768, 12 attention heads, 24 hidden layers, and a patch size of
8 were used for both student and teacher models. The
learning rate was set to 0.0001 with a 10-epoch linear
warmup. Otherwise, the default DINO hyperparameters
were maintained.!® The training was performed for 20
epochs, after which the training loss reached 0.683.

Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

All model development was performed using PyTorch
version 1.13.0 and Python version 3.10.6. The training was
performed on a machine with 8 80GB NVIDIA A100
graphics processing units (Nvidia Corporation, Santa Clara,
California), with a training time per epoch of ~20 hours. The
DINO training code is available online at https://github.
com/facebookresearch/dino. !

To visualize the clustering capability of the pretrained
ViT model, 5000 macular B-scans from patients with POAG
and 5000 from patients without POAG, as defined in the
“Glaucoma progression data set” section, were randomly
selected and embedded using the pretrained ViT. The
embeddings were reduced first to 30 dimensions using
principal component analysis, then to 2 dimensions using #-
distributed stochastic neighbor embedding (t-SNE).

Glaucoma Progression Data set

Patients with a clinical diagnosis of POAG who
underwent at least 5 HVF tests were identified from the
database. POAG was defined based on International Clas-
sification of Diseases codes captured in the electronic med-
ical record and excluded glaucoma attributable to secondary
causes. Clinically significant glaucoma progression was
defined as a mean deviation (MD) decrease of < —0.5
decibels (dB)/year over at least 5 consecutive, reliable 24-2
SITA Standard HVF tests at > 6-month intervals. Pro-
gression was further categorized as rapid (MD decrease <
-1.0 dB/year) or moderate (rate of MD decrease between
—0.5 and —1.0 dB/year).!® HVF reliability was defined by
false-positive rate < 15%, false-negative rate < 33%, and
fixation losses < 33%. Exclusion criteria were the presence of
cataract with visual acuity 20/40 or worse, treatment with
anti-VEGF agent, or incisional glaucoma surgery during the
HVF observation period. Summary statistics were generated
to describe patient demographics and disease characteristics
using the mean and SD for normally distributed data and
median and interquartile range for non-normally
distributed data.

For each prediction task, a hold-out validation set was
identified by sorting the list of unique included patients by
first date of entry in the database and selecting the macular
OCT studies corresponding to one-fifth of patients most
recently added to the database. As classification using a
model trained on retrospectively collected data is funda-
mentally a task of predicting the future, the date of entry to
the database was used to select the hold-out validation set to
mimic the temporal difference in the patient population
inherent in a potential clinical evaluation.!® Model devel-
opment was performed using 80/20 train/test splits on
macular OCT studies from the remaining training set of
patients. The DINO pretraining process was performed with
OCT imaging data from these patients completely excluded.

First, the model was evaluated on the ability to classify
the progression status of macular OCT imaging studies.
Macular OCT studies were considered if they were obtained
within 6 months of an HVF test with an additional 2 HVF
tests performed before and 2 performed afterward, at
intervals of > 6 months (Fig. 2A). Progression status for
each macular OCT study thus identified was determined
using these 5 consecutive HVF tests, and a classifier was
trained to output the progression status given the macular
OCT study as input (see below).

The predictive value of this method for detecting new
onset of visual field progression was evaluated. Patients were
included if they experienced a period of no progression
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FIGURE 1. Overview of the self-supervised DINO pretraining process. Local and global crops of individual B-scans are taken and passed
to a student and teacher ViT model, respectively. Both students and teachers share the same architecture. During training, cross-entropy
loss is applied to the features outputted by the ViT models. The weights of the student ViT are updated by stochastic gradient descent,
while the weights of the teacher ViT are updated with an exponential moving average of the student weights. Following the pretraining

process, the teacher ViT is used for downstream prediction tasks. ViT indicates vision transformer.

followed by either moderate or rapid progression and if
there was a macular OCT study available before the first
HVF test indicating progression onset (Fig. 2B). This
macular OCT was used as the classifier input. In addition,
patients who experienced no progression over the entire
HVF observation period were included, with each macular
OCT directly preceding a period of no progression used as
classifier inputs. A classifier was then trained to predict the
future progression status given the input baseline macular
OCT study.

Progression Classification

The macular OCT classification pipeline is described in
Figure 3. To classify the progression status of macular OCT
as well as to predict future glaucoma progression from a
baseline macular OCT, supervised linear classifiers (com-
prising a single feedforward layer) were trained on the frozen
ViT embeddings, in line with typical evaluations of self-
supervised learning methods.!® For each B-scan, weights from
the teacher ViT network pretrained using DINO were used to
generate 1536-dimensional embeddings comprising the class
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(CLS) token concatenated to the global average pooled patch
tokens over the last ViT layer. Three output labels corre-
sponding to no progression, moderate progression, and rapid
progression were used in training the linear classifier. The
fully connected linear layer was initialized with weights ran-
domly initialized with a mean of 0 and SD of 0.01, and the
bias was initialized to 0. The linear classifier was trained for
100 epochs, with a learning rate of 0.0005 selected by
sweeping.

To combine predictions for an entire OCT study, the
ability of models pretrained using DINO to perform unsu-
pervised clustering!® was used to differentially weight the
linear classifier outputs for individual B-scans based on their
glaucoma relevance. Using K-nearest neighbors (k-NN) on
the entire pretraining data set, the 20 nearest neighbors of
each B-scan were used to determine the prediction proba-
bility for POAG diagnosis. For example, the prediction
probability for a B-scan with 12 of the 20 nearest neighbors
from patients with POAG would be 0.6. This prediction
probability was used to weight the outputs of the linear
classifier (after converting to probability scores using

Visual field exam during
period of no progression
Visual field exam during
period of progression
OCT labeled non-
progressing

OCT labeled moderately
progressing

OCT labeled rapidly
progressing

OCT not labeled

Visual field exam during
period of no progression
Visual field exam during
period of progression
OCT labeled preceding
future progression

OCT not labeled

FIGURE 2. A, Progression status is determined in windows of 5 consecutive HVF tests at 6 month or greater intervals. A decrease in mean
deviation (MD) of < —-0.5 dB/year is considered progression, and a decrease in MD of < —1 dB/year is considered rapid progression;
otherwise, the eye is deemed non-progressing. To assign progression status to a macular OCT, the temporally closest HVF test and its 2
preceding and 2 subsequent tests are taken as the HVF window. B, For the progression prediction task, future progression status is
determined for macular OCT imaging studies obtained during a period of non-progression. The progression status of the subsequent 5
HVF tests after the macular OCT study is used as the prediction label. HVF indicates Humphrey visual field; MD, mean deviation; OCT,
optical coherence tomography.
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FIGURE 3. Overview of the classification pipeline. To generate a prediction for a macular OCT, the individual B-scans are each embedded
using the pretrained vision transformer model. A fully connected linear classifier is trained for each prediction task (progression identi-
fication or progression prediction) and outputs prediction scores corresponding to no progression, moderate progression, and rapid
progression for each B-scan. A weighted average of these prediction scores is taken using the k-nearest neighbors classifier on the
glaucoma status of individual B-scans, which produces the final predictions for the macular OCT. OCT indicates optical coherence

tomography.

softmax across the 3 output labels). This assigns higher
weights to model predictions based on B-scans for which the
pretrained ViT model was able to accurately determine
glaucoma status. Intuitively, this allows the entire macular
OCT study to be considered with preferential attention paid
to the B-scans most relevant to glaucomatous macular
changes, much as a clinician would search for abnormal
patterns when examining B-scans.

Finally, these weights are used to take a weighted
average of the B-scan probability scores, yielding prediction
scores across the 3 output labels for the entire macular OCT
study. This score was used to evaluate overall model per-
formance and calculate area under the receiver operating
characteristic curve (AUC), with 95% confidence intervals
calculated by nonparametric bootstrapping.2

To examine which B-scans were the most predictive of
progression, B-scans for each macular OCT study were
divided into quintiles from superior to inferior. For OCT
studies obtained from eyes that met the criteria for rapid or
moderate visual field progression, the B-scans contributing
the top 20% of the progression prediction score mass were
identified (separately for both before and after the k-NN
reweighing), and the proportion of each quintile’s B-scans
thus identified was recorded. Overall differences in pro-
portions of B-scans predictive for progression between
quintiles were assessed using a y test.

RESULTS

The model pretraining process used 7,702,201 B-scan
images from 151,389 macular OCT studies. The pretraining
data set included a total of 1417 patients with a clinical
diagnosis of POAG. These patients underwent a median of 6
HVF tests (interquartile range 2, 8) during a mean duration
of HVF observation of 4.2+2.2 y.

For the progression detection task, 1639 eyes met
inclusion criteria, with exclusions for incisional glaucoma
surgery (n=>53), treatment with anti-VEGF agent (n=43),
and visually significant cataract (n=9), resulting in 3902
macular OCT studies of 1534 eyes of 828 patients included
for analysis. There were 486 (58.7%) female patients; the
median follow-up was 3.4 years (IQR 2.9-4.8). Character-
istics of the macular OCT studies are given in Table 1. The
training validation splits contained 2478 and 620 OCT
studies, respectively. The hold-out test set of 307 eyes con-
tained 804 macular OCT studies, of which 112 and 99 were

Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

moderately and rapidly progressing, respectively. There was
no significant difference in the proportion of eyes with
glaucoma in the training and validation groups. The model
distinguished stable eyes from moderately or rapidly pro-
gressing eyes (Fig. 4A), achieving an AUC of 0.90 (95% CI,
0.88-0.91). At the balanced operating point, the sensitivity
for detecting progression was 0.84, and the specificity was
0.82. In addition, the model detected rapid progression with
an AUC of 0.92 (95% CI, 0.91-0.93) (Fig. 4B). The sensi-
tivity for detecting rapid progression was 0.84, and the
specificity was 0.87 at the balanced operating point.

For progression prediction, 1436 eyes met inclusion
criteria, with exclusions for incisional glaucoma surgery
(n=48), treatment with the anti-VEGF agent (n=35), and
visually significant cataract (n=7), resulting in 1346 mac-
ular OCT imaging studies from 1205 eyes of 784 patients
included for analysis. There were 469 (60.0%) female
patients; the median follow-up was 3.6 years (IQR 3.0-5.1).
Characteristics of the macular OCT studies are given in
Table 2. The training and validation splits contained 852
and 214 OCT studies, respectively. The hold-out test set for
progression prediction included 241 eyes with 280 macular
OCT imaging studies, of which 39 preceded moderate and
34 preceded rapid progression. There was no significant
difference in the proportion of eyes with glaucoma in the
training and validation groups. The model also demon-
strated a high predictive ability for forecasting future glau-
coma progression (Fig. 5A), with an AUC of 0.85 (95% CI
0.83-0.87). The sensitivity was 0.82 and the specificity was
0.80 at the balanced operating point. Rapid progression was
predicted with an AUC of 0.84 (95% CI 0.81-0.86), with a

TABLE 1. Patient Characteristics by Progression Status for the
Detection of Concurrent Progression

No Moderate Rapid
progression  progression progression
No. OCTs 2862 554 486
Age at baseline 67.4112.5 68.8+12.1 70.0+14.3
Baseline MD -298+£3.60 —4.78%+4.02 -5.36+£3.70
MD rate of change 0.15%0.62 -0.69£0.14 -1.83£0.81

(dBly)

IQR indicates interquartile range; MD, mean deviation; OCT, optical
coherence tomography.
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FIGURE 4. A, ROC curve for progression identification. B, ROC curve for rapid progression identification. ROC indicates receiver oper-

ating characteristic.

sensitivity of 0.75 and specificity of 0.78 at the balanced
operating point (Fig. 5B).

Moreover, progression prediction was evaluated for
macular OCTs obtained early (at least 6 months before future
progression, n=148) and late (less than 6 months before
future progression, n=132). The AUC for the early macular
OCTs was 0.83 and for the late macular OCTs was 0.85.

On examination of the most relevant B-scans for pro-
gression classification, there was no significant difference
found between superior-to-inferior quintiles within the
macular OCT studies for progression identification or for
progression prediction. This was consistent both with and
without the k-NN reweighing.

To examine the impact of the k-NN weighting of the
B-scan-wise linear classifier outputs, the linear classifier
prediction scores were averaged without weighting. The
AUC for the wunweighted progression identification
decreased to 0.87, and for unweighted progression pre-
diction decreased to 0.77. The ability of the pretrained ViT
embeddings to separate glaucomatous from healthy macular
B-scans is illustrated using t-distributed Stochastic Neighbor
Embedding (Supplementary Figure 1, Supplemental Digital
Content 1, http:/links.lww.com/IJG/A869).

DISCUSSION

The challenge of identifying glaucomatous progression
remains a significant barrier to the optimal management of

relevant structural features using deep learning has great
potential to address this gap by linking structural and
functional markers of progression. In addition, artificial
intelligence (Al)-based tools to support clinicians in the
assessment of imaging data may enhance efficiency and help
compensate for variations in the levels of clinician expertise
in evaluating such data. Assessment of visual function with
perimetry is more time-consuming and burdensome for
patients than assessment of structural measures with OCT;
therefore, technological advances that allow a reduction in
the reliance on and frequency of visual field testing have the
potential to improve patient satisfaction. In the present
study, a deep learning model used structural features of
macular OCT to identify concurrent clinically significant
glaucomatous visual field progression and to predict future
visual field progression using only a single baseline scan.

There has been mounting evidence for the value of
longitudinal macular OCT in glaucoma management. Rapid
RGC complex thinning has been reported to predict central
visual field loss over time,?! while thickness maps derived
from macular OCT have been shown to distinguish glaucoma
from normal with high diagnostic accuracy.?>*3 Though most
studies thus far have used macular OCT-derived parameters
—namely thickness—in their analyses,2* recent work has
explored the use of full, unsegmented macular OCT imaging
studies to detect referable glaucoma.?’

Increasingly, deep learning methods have enabled more
sophisticated analyses supporting glaucoma management.

. . . : e 15,2
glaucoma. Interrogation of previously overlooked disease- ~ Multiple modalities, most commonly fundus photography 526
TABLE 2. Patient Characteristics by Progression Status for the Prediction of Future Progression

No progression Moderate progression Rapid progression

No. OCTs 1013 175 158
Age at baseline 66.5+12.7 66.611.5 67.7+12.3
Time until first HVF (y) 0.81%£0.77 (IQR 0.34, 1.02) 0.60£0.55 (IQR 0.18, 1.0) 0.69£0.68 (IQR 0.25, 0.94)
Baseline MD —2.52+4.54 -2.64£3.99 -4.061£4.12

HVF indicates Humphrey Visual Field; IQR, interquartile range; MD, mean deviation; OCT, optical coherence tomography.
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characteristic.

and RNFL OCT,*2 have been examined to diagnose
glaucoma and quantify disease severity. Deep learning is par-
ticularly well-suited to the examination of ophthalmologic
imaging data, given its ability to identify patterns within
imaging data that may not be immediately apparent to the
human observer. More recently introduced transformer-based
models have also outperformed older deep-learning methods
for glaucoma classification tasks.?*?° Transformer models
have been shown to be particularly advantageous on large-
scale datasets comprising millions of images, as in the current
study.3® However, relatively few studies to date have used deep
learning to examine the diagnostic and predictive value of
macular OCT in glaucoma,??232%31:32 and to our knowledge,
this is the first to use a ViT model pretrained in a self-supervised
manner such as DINO.

Detecting and predicting glaucoma progression is a
more challenging problem than simply diagnosing glau-
coma. The method presented in the current paper offers
some key advantages to previously published approaches to
OCT analysis with deep learning. First, the algorithm
operates on segmentation-free data and considers all
B-scans within the OCT study, providing maximal infor-
mation for the model to evaluate. Moreover, the self-
supervised training of the ViT model using a large quantity
of macular OCT data enabled representation learning on
macular OCT B-scans that generate embeddings that gen-
eralize sufficiently to downstream classification tasks. This
model and strategy can also be applied to settings other than
glaucoma.

The findings of this study demonstrate the feasibility of
using macular OCT to detect functional glaucoma pro-
gression using structural data with reasonably high accu-
racy. The model identified macular OCTs obtained during
periods of HVF progression of at least —0.5 dB/year, and
the predictive ability further improved for detection of rapid
HVF progression of at least —1 dB/year. This improvement
suggests that increasing progression severity is reflected in
more pronounced macular OCT changes, enabling risk
stratification of patients through classification into rapidly

Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.

and moderately progressing groups. The prediction score of
the model can also be varied to prioritize sensitivity or
specificity, depending on the clinical needs. Moreover, the
model was more predictive of future progression when given
a macular OCT obtained closer in time to the progression
interval. There was no significant difference in the location
of B-scans most diagnostic of progression or future pro-
gression, indicating that changes throughout the macula are
associated with progression.

These results build upon previous work, which has used
color fundus photographs to diagnose glaucoma and predict
functional progression,'® as well as another study that used
circumpapillary RNFL thickness measurements to detect
structural progression.?’” While this study demonstrates
promising use for macular OCT, which may be more
broadly available in patients who have not yet received
dedicated glaucoma evaluation, there is complementary
information in fundus photography and circumpapillary
OCT imaging, which may yield improved insights on the
disease process. As deep learning techniques continue to be
developed for glaucoma applications, it is likely that meth-
ods combining information from multiple modalities,
including OCT imaging data of the optic disk and circum-
papillary retina, will further improve the accuracy of Al
models for the detection and prediction of glaucoma
progression.

An important methodological aspect of this study is the
use of HVF progression as a functional, rather than struc-
tural, end point. As the ultimate goal of glaucoma therapy
—whether medical or surgical—is the prevention of irre-
versible vision loss, delivering interventions to optimize
functional outcomes may result in better clinical outcomes
than optimizing structural measures such as RNFL thick-
ness, which may not directly impact patient quality of life.
HVF progression, as measured by the rate of MD change,
has further been validated as a strong clinically relevant end
point for glaucoma progression.!® As this tool can predict
progression using only 1 macular OCT in place of 5 HVF
tests with an AUC of 0.849, progressing eyes can potentially
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be identified earlier than would be possible using perimetry,
enabling timelier intensification of therapy. Moreover,
patients identified to be at high risk of future progression
can be more closely monitored and potentially targeted for
intensification of therapy. In this manner, the use of deep
learning as a precision medicine tool has great potential to
supplement clinical decision-making by providing clinicians
with predictive forecasts regarding glaucoma progression
and flagging patients in whom a high likelihood of con-
current visual field progression is present.

Limitations

As this was a single-center study, the generalizability of
these results to other patient populations remains to be
confirmed, and such studies are in the planning phase. The
data set included only Spectralis OCT imaging studies;
imaging from other platforms may differ systematically and
require a new pretraining process. There may also be a
component of selection bias in the present cohort due to the
requirement of 5 HVF tests for inclusion, as patients deemed
more likely to progress may have been more likely to have
been under more intensive longitudinal observation and thus
were more likely to have been included in this analysis. Such
bias likely increased the proportion of eyes with moderate
and rapid progression in both the training and testing
datasets; however, we do not believe this was likely to have
influenced our assessments of the diagnostic accuracy of the
deep learning algorithm.

While clinically relevant, the use of HVF data as the
prediction end point may not be ideal due to its high test
variability. Although this limitation was mitigated by the
requirement of 5 separate HVF tests with at least 6 months
between tests to define progression, this strategy may also
cause short, rapid periods of progression to be overlooked.
For instance, a patient with rapid progression evident
between the first and second HVF tests, which then stabi-
lized between the second and fifth tests, may be categorized
as being stable overall. Early pointwise HVF changes may
also not be captured completely by MD changes, and other
disease processes may contribute to HVF changes. More
generally, further work standardizing the analysis of peri-
metry data to robustly quantify short-term and long-term
progression or stabilization throughout the disease course
will improve the ability of deep learning methods to provide
clinically relevant predictions. Future efforts will be directed
to explore the predictive value of macular OCT for alter-
native markers of glaucoma progression, such as circum-
papillary RNFL thinning, using deep learning.

Finally, the explainability of the model is limited due to
the multistage approach to classification. While the ability
of the pretrained ViT model to cluster related images with
only self-supervised training can be visualized (Supple-
mental Fig. 1, Supplemental Digital Content 1, http://links.
lww.com/IJG/A869), the downstream tasks of progression
detection and prediction can only be examined for relevant
B-scans used in model decision-making; the relevant regions
of each B-scan cannot be directly visualized. Further work
that extends ViT modeling of macular OCT to a 3-dimen-
sional framework capable of examining the entire OCT
examination at once may mitigate this drawback.

CONCLUSIONS

A deep learning model detected clinically significant
functional glaucoma progression using macular OCT
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tomograms and was also able to predict future progression.
Early identification of patients undergoing glaucoma pro-
gression or at high risk thereof may aid clinical decision-
making to optimize vision preservation. Further research is
needed to elucidate the structural underpinnings of glau-
coma progression within the macula. Future work should be
directed toward including optic disk and peripapillary OCT
imaging data in deep learning models.
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