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eMethods 1: Model development dataset 

Model development was performed using 5,920,184 institutional plain film radiography studies 

taken from May 1999 through June 2022. All radiograph modalities and acquisition types (e.g. 

portable, fixed, etc.) were included. A patient-level 70/20/10 train/validation/test split yielded a 

training set of 4,186,288 studies, a validation set of 1,147,172 studies, and a test set of 425,877 

studies. A breakdown of the training set studies by anatomy type is given in eTable 4. 

 

A structured clinical information prompt was generated from available clinical information 

associated with each study by querying the electronic health record database via structured query 

language scripts. First, the “PROVIDERS:” field is populated with all radiologist names 

associated with interpretation of the study, separated by semicolons; the “PROCEDURE:” field 

is populated with the name of the imaging procedure performed; and the “HISTORY:” field is 

populated with the reason for exam documented as part of the imaging study order. Any 

information that could not be identified was listed as “Unspecified”. Next, the 

“COMPARISON:” field is populated with the name of the most recent prior radiograph study of 

the same body part available in the database, as well as the time interval (“within 4 hours”, 

“within 24 hours”, “within 1 week”, or “within X weeks”, with X denoting the number of weeks) 

between the two studies. Else, if no comparison was identified, the field was populated as 

“None”. Finally, a special token, “<_begin_report_>” is added to denote the end of the clinical 

information prompt, after which the report body is to be generated. 
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eMethods 2: Model architecture 

The generative model is a multimodal encoder-decoder transformer-based model1 jointly 

conditioned on text and images, trained to produce free text radiology reports. Weights for the 

base-size vision transformer2 used as the vision encoder were initialized from a model pre-

trained on ImageNet in a self-supervised manner using DINO3 with a patch size of 16 

(https://huggingface.co/facebook/dino-vitb16). As radiographs are monochrome, requiring only 

one color channel, the patch embeddings of this model were combined to a single channel by 

summing the weights across the channel dimension. 

 

Text decoder weights were initialized from the 125 million parameter Open Pre-trained 

Transformer (OPT) 4 checkpoint (https://huggingface.co/facebook/opt-125m). The decoder 

tokenizer was based on the default RoBERTa5 tokenizer trained from scratch using the standard 

byte-pair encoding algorithm6 with a 5,000 token vocabulary size on the training dataset, with 

replacement of spaces with a custom string so that splitting was not performed on spaces, 

enabling encoding of commonly used phrases containing multiple words into a single token. 

Finally, the special “<_begin_report_>” token was added to the vocabulary. To accommodate this 

custom tokenizer, the OPT token embeddings layer was re-initialized to size 5,001 using 

Kaiming Initialization. 7 Cross-attention layers were initialized from scratch using Kaiming 

Initialization. Decoder position encodings were truncated to length 512.  

 

  

https://huggingface.co/facebook/dino-vitb16
https://huggingface.co/facebook/opt-125m
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eMethods 3: Model training 

Encoder position embeddings were interpolated to enable fine-tuning at the 1024 x 1024 input 

resolution. The left half of this input image is reserved for the comparison study (or set to black 

if none exists), and the right for the current study. To accommodate multi-image studies, all 

images in a study underwent a rotation step to horizontal alignment, rectangular cropping of 

background black pixels, scaling to the full 16-bit range, and resizing to height of 1024 pixels. 

All images for a study were then tiled horizontally in a random order, then horizontally resized to 

512 pixels and placed in the appropriate half of the input image. The order of tiling was 

randomized by the data loader as a data augmentation step.  

 

During training and inference, the tokenized clinical information prompt was provided to the text 

decoder directly as a prompt from which generation proceeds. In training, a custom mask was 

also provided to prevent the loss function from considering the clinical information prompt, so 

that the only learning signal was derived from the report body.  

 

The model was trained for 20 epochs on a machine with 4 80GB NVIDIA A100 graphics 

processing units (GPUs) to optimize the image captioning loss for report findings prediction 

conditioned on the input image and clinical information prompt. A learning rate of 2.75E-4, 

warmup ratio of 0.025, and global batch size of 96 were used with Adam optimization with 

parameters β1 of 0.9 and β1 of 0.999.  
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eMethods 4: Model evaluation using automated metrics 

To enable subgroup analysis of changes in documentation time with model usage by pathology, 

the CheXbert labeler8 was applied to identify pathologies present in final radiologist-documented 

report text, taking “positive” outputs to indicate pathology presence and “negative”, “uncertain”, 

and “blank” outputs to indicate pathology absence. An additional “Finding” category was 

included to indicate presence of any radiographic finding by taking the inverse of the “No 

finding” label. For non-chest studies, only the subgroups of “Fracture”, “Support devices”, “No 

finding”, and “Finding” were used, as these pertain to non-chest radiographs. Subgroups by 

radiograph anatomy were additionally investigated. Data are presented as means and 95% 

confidence intervals were computed using 500 bootstrap samples. 

 

To evaluate model performance, 5,000 chest and 5,000 non-chest studies were randomly sampled 

from the held-out test dataset. Clinically-aligned metrics (CheXbert vector score, RadGraph F1, 

and RadCliQ-v0) were used to evaluate quality of model-generated reports compared to the 

ground truth reports using a standard chest radiograph report evaluation package. 9 To 

prospectively evaluate model accuracy, 5,000 chest and 5,000 non-chest studies 

were randomly sampled from the set of radiographs interpreted without model 

usage from November 15, 2023 to April 24, 2024 and evaluated in the same way. Reports were 

generated using the same prompting scheme as in the live clinical deployment.  

 

To evaluate model performance across pathology subgroups, the CheXbert labeler was applied as 

described above to calculate pathology-specific F1 scores as well as micro- and macro-F1 scores 

by comparing CheXbert labels of model outputs to those in final radiologist reports for the 

prospective quality evaluation dataset, the entire prospective model-assisted dataset, and the 

prospective test dataset. Data are presented as means and 95% confidence intervals were 

computed using 500 bootstrap samples. 

 

Moreover, generalization to external datasets was examined by benchmarking model 

performance on MIMIC-CXR, 10 a dataset of chest radiographs widely used for development and 

evaluation of report generation models. Both zero-shot and fine-tuned model evaluation was 

performed on the standard MIMIC-CXR10 test set of 3,269 studies. To create the clinical 

information prompt, the “PROVIDERS:” field was set to “Unspecified”, the “PROCEDURE:” 

field was set to “XR CHEST”, and the “HISTORY:” field was set to “None”. The 

“COMPARISON:” field was set to the time difference between the study of interest and the most 

recent prior study contained in the MIMIC-CXR dataset for that patient based on the DICOM 

metadata. Model inference was otherwise performed using the hyperparameters previously 

described. Recently described models were identified via review of pre-prints and published 

literature for comparison. Further comparisons to unpublished models may be made using the 

ReXrank leaderboard (https://github.com/rajpurkarlab/ReXrank). In addition, because the entire 

MIMIC-CXR training dataset of 222,758 studies was used in development of all other models 

referenced here, model performance was benchmarked after finetuning the model on the 

MIMIC-CXR training set for 10 epochs using the hyperparameters and training strategy 

previously described, albeit with a lower learning rate of 1E-4, to provide a direct comparison. 

https://github.com/rajpurkarlab/ReXrank
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All 95% confidence intervals for evaluations on the MIMIC-CXR test set were calculating using 

500 bootstrap samples as previously described. 9 

 

Note that CheXbert, 8 RadGraph, 11 and RadCliQ were developed specifically for chest 

radiograph report evaluation, 9 while similar clinically-grounded metrics have not yet been 

proposed for evaluation of non-chest radiograph reports. However, these metrics are presented as 

a benchmark for future comparison, based on the ability of CheXbert and RadGraph to extract 

clinical entities relevant to non-chest radiographs in the internal test set. 
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eMethods 5: Ablation and model scaling evaluation 

Ablation studies and the model scaling evaluation were performed by training on the MIMIC-

CXR dataset, to ensure reproducibility. The standard train, validation, and test splits were used. 

Tiling and prompting were performed as previously described. A baseline model was trained 

using the same hyperparameters as used for original model training; the clinical information 

prompt was constructed using MIMIC-CXR data as described above. Ablation of tiling was 

performed by randomly selecting only one current and one prior image (if applicable) among the 

anteroposterior and posteroanterior views, if more than one image was present in a study; thus, 

the extent of image resizing remained consistent across the entire dataset. Ablation of prompting 

was performed by using a single prompt for each study, containing “Unspecified” for the 

provider, procedure, history, and comparison fields. Inference-time ablations of tiling and 

prompting were also performed by applying these ablations to the trained baseline model to 

perform inference.  

 

Model scaling was investigated by separately training the model with a higher resolution vision 

encoder (ViT-base with patch size 8), as well as with a larger text decoder (OPT-350M). 4 

Because the original model used a ViT-base checkpoint pre-trained using DINO, 3 for which only 

ViT-small and ViT-base checkpoints are available, scaling of the vision encoder was 

investigated by decreasing the patch size rather than directly increasing the encoder size (e.g., to 

ViT-large).  

 

To assess potential variation in model performance due to the degree of image tiling present in 

the radiograph studies, information on number of image counts was retrieved from the EHR for 

the chest and non-chest prospective non-model usage test sets. Multiple regression models were 

fit to determine whether RadCliQ-v0 scores were associated with primary study and comparison 

study view counts for chest and non-chest studies. 
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eMethods 6: Model implementation and usage 

To perform inference, relevant clinical data are automatically retrieved from EHR data; 

information not available to create the clinical data prompt is denoted as “Unspecified”. Upon 

receipt of an HL7 message associated with completion of radiograph acquisition, a server 

downloads all available DICOM format images for the imaging study, pre-processes them, and 

provides them as model input along with relevant clinical data from the HL7 message. An 

appropriate comparison study is automatically identified by querying the EHR for the most 

recent radiograph study examining the same body part. Inference is performed for all studies 

across the health system using a machine with one 80GB NVIDIA A100 GPU at a cost of 

approximately $4.00 per hour. Typical decoding12 with a parameter value of 0.9 is used. To 

ensure uniform formatting of report outputs, chest and non-chest studies each use one standard 

radiologist name in the clinical information prompt. The model outputs are then populated within 

PowerScribe as custom fields ("metadata") and are included within a template selectable by 

radiologists, either manually or by voice command, who are using the model. Because inference 

completes within seconds, in the overwhelming majority of cases the model-generated report 

was available immediately upon opening a study. Documentation start time was defined to be the 

time at which the radiologist first opened the study. 

 

All radiologists documented using voice dictation and individually created report templates 

within PowerScribe both before and during the model implementation period. Use of the tool is 

limited to attending radiologists, and radiologists must attest to independently interpreting the 

imaging and amending the draft report as needed, mimicking their workflow for revising trainee-

produced reports. Importantly, draft AI reports are only visible to approved radiologists, unlike 

preliminary resident reads which are accessible to all providers, and at no point does the draft AI 

report serve as the sole interpretation for any imaging. 
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eMethods 7: Power analysis for peer review study 

Considering the large sample size of reports included for documentation timing efficiency, it was 

not feasible to perform peer review for the entire dataset. Therefore, for the peer review study, an 

initial power analysis was conducted (G*Power v3.1.9.6, www.psychologie.hhu.de) to detect an 

effect size of 0.15 (similar in magnitude to a previous study13) with 80% power with fixed effects 

of model usage (model, no model) and study type (chest, non-chest). It was determined that a 

total sample size of 351 would be needed to detect the study type by model usage interaction 

effects to a small (0.3) effect size. A sample size of 400 randomly sampled studies was collected 

to allow for a 15% attrition rate due to radiologists being excluded from evaluating their own 

reads. 
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eMethods 8: Peer review evaluation scale and platform 

The rating scales for peer review measurement of clinical accuracy and textual quality of 

radiograph reports were based on a previously published scale13 but with separation of the 

clinical and textual quality components. A similar system is used for peer review of studies at 

our institution. Similarly to the RADPEER scoring system widely used in quality assurance for 

radiologist interpretations, the scale differentiates between reporting discrepancies with and 

without clinical significance. 14 In doing so, the scale separates studies by acceptability for 

informing clinical patient care.  

 

To evaluate clinical accuracy and textual quality, radiologists were instructed to independently 

interpret the study of interest given the imaging data provided using their normal workflow, then 

evaluate clinical accuracy and text quality of the given report using the rating scales shown in 

Box 1. Instructions provided to the reviewers are shown in Box 2. Radiologists used a web 

application (eFigure 1) to perform all grading. Upon opening of a study, the relevant imaging and 

comparison studies automatically open in a test instance of Visage (Richmond, Australia). For 

each graded study, all radiographs of the same body part obtained up to a month prior were 

included, as well as related anatomy (e.g. for a wrist study, hand and forearm radiographs were 

included, as well as contralateral studies). Additionally, the five most recent radiographs of the 

same body part were identified and included, if not already contained within the one-month 

interval. Moreover, if the graded study specified a comparison study that was not already 

identified by the prior steps, then that study was separately identified and included. All report 

text, image, and Digital Imaging and Communications in Medicine (DICOM) data was 

deidentified, with random shift of dates (eFigure 1) and redaction of any other identifying 

information. The same date shift was used for all comparison studies so that relative time 

intervals remained accurate. If a clinical score of less than four was given, additional prompts 

appeared for the radiologist to specify all reasons for disagreement. 
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Box 1: Instructions provided to radiologists performing peer-review evaluation of imaging 

studies.  

A. Clinical accuracy ratings 

a. For clinical accuracy, consider how the clinical findings pertinent to the case are presented by the report, 

based on your independent interpretation of the imaging study 

i. A score of 4 indicates complete agreement with the clinical findings contained in the study 

ii. A score of 3 indicates that critical findings are appropriately reported, but one or more non-

critical findings are not 

iii. A score of 2 indicates that non-critical findings are appropriately reported, but one or more 

critical findings are not 

iv. A score of 1 indicates that both critical and non-critical findings are inappropriately reported, or 

that the majority of study findings are inappropriately reported 

b. A critical finding is defined to be any finding in the imaging study which would change the immediate 

management of the patient if reported incorrectly, in your clinical judgement 

c. If the clinical accuracy score is <4, please indicate all reasons for your disagreement using the 

checkboxes, and provide a brief explanation for each discrepancy (e.g. “Pneumothorax is on the right, not 

left. A left pleural effusion is not reported.”) 

B. Text quality ratings 

a. For textual quality, only consider aspects of the report text itself (i.e., imagine that there are no images 

available, and you are only judging the quality of the report text in isolation) 

i. A score of 3 indicates that no changes to grammar, wording, or formatting are needed 

ii. A score of 2 indicates that the report requires changes which could reasonably be revised in the 

typical clinical workflow 

iii. A score of 1 indicates that the report requires extensive changes which necessitate rewriting the 

entire report from scratch 
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eMethods 9: Pneumothorax prioritization strategy 

The prioritization system was designed to identify radiograph studies for which the AI draft and 

available EHR indicated a clinically significant, new pneumothorax. This ran in a “shadow 

deployment” in real time alongside the live model deployment workflow. Thus, studies were 

prioritized in real time, but no clinician notification occurred; rather, information on flagged 

studies was logged to the AI model monitoring database. All studies for which a model-generated 

report was available underwent prioritization. This included both chest and non-chest studies due 

to the possibility of a pneumothorax being visualized on a shoulder, rib, or abdominal 

radiograph.  

 

The prioritization strategy is as follows. First, reports which did not contain the case-insensitive 

substring “pneumothora” were excluded. Next, studies with a reason for exam or for which the 

comparison study reason for exam contained any “Reason for exam” substring given in eTable 1 

were excluded. Moreover, studies were excluded if the patient had been admitted to any surgical 

unit or the cardiothoracic intensive care unit within the past four days. At this point, the model-

generated report text was classified as containing or not containing a pneumothorax using 

RadGraph11 to identify presence of any of the following clinical entities: “pneumothorax”, 

“pneumothoraces”, “hydropneumothorax”, “hydropneumothoraces”. Both “uncertain” and 

“definitely present” entities, per RadGraph, were considered to indicate presence of a 

pneumothorax; studies not containing a pneumothorax per RadGraph were excluded. Next, 

patients with known pneumothoraces were excluded by examining the model and any prior 

imaging report text in the past four days for any “Chest tube” substring given in eTable 1, and 

were also excluded if a pneumothorax was present, per RadGraph. Finally, to avoid prioritizing 

clinically insignificant or stable pneumothoraces, studies were excluded if the model report 

contained any sentence with both the substring “pneumothora” as well as one of the “Clinical 

context” substrings.  

 

To identify the ground truth set of studies with clinically significant pneumothorax for which a 

radiologist notified the clinical care team, all studies interpreted during the live prioritization 

period of February 5, 2024 to April 24, 2024 were retrospectively examined. Reports were 

searched for instances of clinical team notification by performing a text search for a custom tag 

which radiologists at our institution use to indicate presence of a critical finding, or any of the 

following case-insensitive substrings: “discussed”, “sent”, “text”, “called”, “page”, “notif”, 

“communic”, “given to”, “relay”, “convey”, “delivered”, “ aware”, “talk”. The resultant reports 

were parsed using RadGraph to identify those containing a pneumothorax, as above, and 

prioritized using the system previously described. Flagged studies for which report text 

contained both a pneumothorax and documentation of clinical team notification were confirmed 

by manual review. Time to clinical team notification was calculated as the interval from study 

acquisition completion to documented time of this notification, if provided in the report text; if 

not, the time at which the study was first opened by the radiologist was used, as logged in 

electronic health record data. 
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eMethods 10: Secondary statistical analyses 

To further examine the relationship between potential factors influencing documentation time 

with the AI model, a multiple regression model was fit (stats package in R, v4.3.0) to 

documentation time with potential predictor values of: number of word edits, RadGraph F19 

scores (to measure extent of clinically relevant content edited), and study type with covariates of 

RadGraph11 entity and relation count (to measure clinical content of the report), the original AI-

generated report word count, study critical or non-critical status, radiologist, proportion of 

radiologist pre-model reads with a resident, and years of radiologist clinical practice experience. 

All non-significant covariates were removed from the model. Word count was calculated by first 

extracting the Findings and/or Impressions sections of the report text (excluding header study 

background information and footer attestation or signature text). Word edits were calculated by 

extracting the Findings and/or Impressions sections, then using the difflib module (Python 

version 3.10.6) to count word-level differences between the AI model and final radiologist 

reports. Word edit count was used instead of word error rate as a measure of report editing as the 

latter resulted in a lower model R2 value and greater residual sum of squares; moreover, word 

error rate may be derived from word edit count and generated report length, both of which were 

included in the model. RadGraph information quantity was defined as the total number of 

anatomy and relation entities identified in the model-generated report within the clinical entity 

graph produced by RadGraph. RadGraph F1 was calculated using a standard library9 by 

comparing model reports to final radiologist reports as the ground truth. “Critical” studies were 

defined to be those containing any of the following CheXbert pathology categories: “Enlarged 

cardiomediastinum”, “Lung opacity”, “Consolidation”, “Pneumonia”, “Pneumothorax”, and 

“Fracture”, while “Non-critical” studies were all other studies; this categorization was arrived at 

by radiologist consensus. 

 

The distributions of radiograph type were compared between pre- and post-model datasets using 

a Chi-Square Goodness of Fit Test after categorizing all radiographs into the following 

categories: chest, abdomen/pelvis, spine, lower extremity, upper extremity, thorax-

musculoskeletal, and other. Because a single radiograph could appear in multiple categories, Chi-

Square tests were performed individually for each body part with Bonferroni-Holm corrections.  

 

Subgroup analyses were also completed to evaluate potential differences in peer review quality 

scores by pathology with a cumulative link mixed model fit with the clinical score on reports 

subgrouped by presence of CheXbert pathology categories. Comparisons between subgroups are 

reported on the logit scale. The “Consolidation” category was not included in this subgroup 

analysis due to limited data points. To investigate the types of errors, a generalized logistic 

mixed-effects model was fit on the binary response variable with fixed effects of time and study 

type. Kendall’s W was employed to calculate clinical score- and text score rating concordance 

using DescTools (version 0.99.49) in R using corrections for tied rankings. 
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eAppendix 1: Control group radiologist documentation efficiency 

The control group of studies interpreted by the cohort of radiologists with no model usage 

consisted of a pre-model implementation and a post-model implementation set of studies, both of 

which comprised 10,897 studies of which 8,683 (79.7%) were chest and 2,214 (20.3%) were 

non-chest radiographs. The chest radiographs were interpreted by 12 radiologists reading a 

median of 204 studies (IQR 49.5-924) and the non-chest radiographs were interpreted by 15 

radiologists reading a median of 60 studies (IQR 28-122). 

 

In the non-model control cohort, there was a significant main effect of procedure type on 

documentation time (χ²=14.58, df=1, P<0.001), with documentation time for non-chest studies 

being significantly slower than chest studies (by 133.0±34.8 s). The main effect of model usage 

was not significant (χ²=3.65, df=1, P=0.06), with studies before (184±25.0 s) not being 

significantly different than studies after model implementation (194.0±25.0 s). The time by study 

type interaction was not significant (χ²=0.26, df=1, P=0.61). Thus, there was no evidence for any 

change in documentation efficiency during the study period for radiologists who did not use the 

model.  
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eAppendix 2: Factors associated with documentation efficiency improvement 

We hypothesized that documentation efficiency might be associated with measures of generated 

report content (RadGraph information quantity and word count) and quality (RadGraph F1 score 

and word edit count), due to time required to verify report; with presence of critical findings in 

reports, due to study complexity; and with radiologist seniority and experience editing trainee 

reports, due to expertise and familiarity with editing in the clinical workflow. On secondary 

analysis investigating the association of these factors with study documentation time, the 

multiple regression model was significant (F=145.0, P<0.001, adjusted R2=0.25). Word edit 

count was significantly associated with documentation time (1.16±0.07, t=17.1, P<0.001) 

although RadGraph F1 was not. RadGraph information quantity (1.50±0.08, t=19.0, P<0.001), 

model-generated report word count (-0.56±0.07, t=-8.09, P<0.001), and non-chest procedure 

type (51.6±8.95, t=5.76, P<0.001) were significantly associated with documentation time, while 

critical finding presence, years of experience, and proportion of pre-model reads interpreted with 

a resident were not. 
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eAppendix 3: Peer review radiologist information 

Among the 800 reviewed studies, 10 radiologists were represented (6 reading chest, 1 reading 

non-chest, and 3 reading both study types). The chest studies were evaluated by two generalist 

and two cardiothoracic subspecialty-trained radiologists, and the non-chest studies by four 

musculoskeletal subspecialty-trained radiologists. Raters had a median of 6.5 years of post-

residency practice experience (range: 3-17 years). 
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eAppendix 4: Cumulative link mixed model outputs for textual quality peer review 

The main effect of study type was significant (χ²=11.59, df=1, P=0.001), with chest studies rated 

significantly higher than non-chest studies (by 1.37±0.82, z=3.25, P=0.001). The model usage by 

study type interaction was also significant (χ²=5.05, df=1, P=0.02). Post-hoc tests revealed that 

chest textual ratings were significantly greater with the model compared to without (by 

0.83±0.57, z=2.9, P=0.02). Chest studies with the model were also rated significantly greater 

than non-chest studies with (by 1.77±0.92, z=3.7, P=0.001) and without (by 1.80±0.92, z=3.8, 

P=0.001) the model. No other comparisons were significantly different. 
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eAppendix 5: Evaluation by automated metrics of radiograph quality 

Accuracy of the model-generated reports for pathology classification for both chest and non-

chest studies was investigated by using the CheXbert labeler (eFigure 2), demonstrating 

performance competitive with or exceeding that of recently reported models across individual 

pathologies and aggregated macro-F1 score. 15-19 Overall model performance for report 

generation was characterized by evaluation on the internal held-out and prospective test sets as 

well as the external MIMIC-CXR test set (eTable 7), showing competitive performance of our 

model compared to recently reported approaches. 16-21  

 

Moreover, ablation studies were performed to characterize the impact of model architecture 

design on performance, as measured by automated metrics of report quality (eFigure 4). Ablation 

studies were performed by training the model from scratch on the MIMIC-CXR dataset, to 

enable independent replication. Overall model performance was decreased substantially with 

ablation of prompting but remained consistent with ablation of tiling, though performance was 

higher with tiling than without for studies containing multiple views. Similarly, ablation of 

prompting during inference decreased overall performance while ablation of tiling during 

inference did not.  

 

Additionally, considering the relatively small size of the model compared to recently reported 

approaches to radiograph report generation, we investigated the effect of increasing the model 

size on performance, using the MIMIC-CXR dataset (eFigure 4). These experiments show that 

increasing encoder resolution and decoder size both improve model performance.  
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eFigure 1: Peer review web application 

 

 

Screenshot of the peer review web application used by radiologists to grade report quality. The 

checkboxes and text entry field for description of discrepancy are only shown when a rating of 

less than four is selected for clinical accuracy. Note that all dates were shifted by a randomized 

interval. 
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eFigure 2: Model performance across pathology subgroups 

 

Model performance was evaluated across pathology subgroups by calculating CheXbert F1 

scores as well as micro- and macro-averaged F1 scores based on outputs of the CheXbert labeler, 

for the prospective model usage dataset (left), the prospective peer review quality evaluation 

subset (center), and the prospective test dataset of reads documented without model usage 

(right). F1 scores were calculated using model-generated reports as the prediction and final 

radiologist reports, either derived by editing the model-generated report (left and center panels) 

or independently documented without knowledge of the model-generated reports (right), as 

ground truth. The prospective non-model macro-F1 score of 0.426 for chest studies, which 

measures overall performance averaged across all 14 pathology categories, demonstrates 

performance competitive with or exceeding the previously reported state of the art. 15-17,21 For 

subgroups including both chest and non-chest studies, the chest study count is listed first, 

followed by the non-chest study count.  
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eFigure 3: Documentation time change by radiograph subgroup 

 

Documentation time improvement as ratio of post-model documentation time to pre-model 

documentation time by pathology subgroups (left) and anatomy subgroups (right) of the 

prospective timing dataset (n=11,980 studies) identified using the CheXbert labeler. Data are 

presented as means and 95% confidence intervals were computed using 500 bootstrap samples. 

Only the “Fracture”, “Support devices”, “No findings”, and “Finding” categories are considered 

for non-chest studies, as the others are not relevant to non-chest studies. The dashed black line 

shows the overall documentation time over the entire dataset. The dotted red line indicates no 
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change in documentation time, with data points to the left reflecting faster documentation with 

the AI model (indicated by the downward arrow, ↓). For subgroups including both chest and non-

chest studies, the chest study count is listed first, followed by the non-chest study count. 

Diamond markers indicate that the data point is an aggregate of other subgroups shown above. A 

comprehensive breakdown of radiograph anatomy types is provided in eTable 4. 
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eFigure 4: Pneumothorax flag criteria 

 

Radiograph studies containing a clinically significant and unexpected pneumothorax (red inset) 

are identified in real time by examination of the AI model-generated report and relevant data 

from the hospital EHR. The screening criteria were designed to maximize relevance of 

prioritized pneumothoraces by excluding patients with known pneumothoraces, patients who 

recently underwent surgery, and patients with subtle or radiographically uncertain 

pneumothoraces unlikely to impact clinical care. 
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eFigure 5: Ablation studies and model scaling investigation 

 

a, Impacts of image tiling and custom prompting were investigated via ablation studies 

performed by training the model from scratch on the MIMIC-CXR database. When trained 

without tiling, the model demonstrates comparable performance to the baseline across all four 

evaluated metrics. However, the model trained without prompting demonstrates degraded 

performance. b, Subgroups of the test set based on number of views in the current study views 

demonstrate slightly improved performance for studies with multiple views when the model is 

trained with tiling, compared to without. c, Inference-time ablations of tiling and prompting 

demonstrate similar performance without tiling but worse performance without prompting. d, 

Scaling model size by increasing encoder resolution or increasing decoder size improves 

performance. 
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eFigure 6: Flowchart for pneumothorax-flagging study inclusion 

Shown is the cohort of model-generated radiograph reports screened for presence of clinically 

significant and unexpected pneumothorax, along with numbers of inclusions and exclusions by 

flag criteria. 
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eTable 1: Prioritization text search exclusions 

Clinical information Substring 

Chest tube “chest tube”, “pigtail”, “pleural catheter”, “pleurx” 

Reason for exam 

“chest tube”, “transplant”, “thoracic decompress”, “thoracent”, “postop”, “post op”, “post-

op”, “ surg”, “postsurg”, “ oht”, “ ct remov”, “lung tx”, “biopsy”, “ bx”, “lobectom”, “ vats”, 

“wedge resec”, “segmentectomy”, “pleurodesis”, “follow-up pneumothorax”, “follow up 

pneumothorax”, “fu pneumothorax”, “f/u pneumothorax” 

Clinical context 
“decrease”, “stable”, “smaller”, “improve”, “resolv”, “resolution”, “suggestion”, “subtle”, 

“minimal”, “tiny”, “trace” 

 

Substring search (case insensitive) used to exclude model-generated report text and clinical 

information.  
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eTable 2: Study demographic information 

 Study cohort 

 Documentation 

efficiency (n=23,960) 

Quality peer review 

(n=800) 

Pneumothorax 

flagging (n=97,651) 

Number of unique patients 14,460 800 73,881 

Age, mean (SD), y 59.6 (17.5) 57.5 (19.6) 60.5 (18.1) 

Sex, No. (%)    

    Female 11,689 (48.8) 457 (57.1) 54,088 (55.4) 

    Male 12,268 (51.2) 343 (42.9) 43,535 (44.6) 

    Other 3 (<0.1) 0 19 (<0.1) 

    Unknown 0 0 9 (<0.1) 

Race and ethnicity, No. (%)    

    American Indian or Alaska Native 60 (0.3) 3 (0.4) 344 (0.4) 

    Asian 995 (4.2) 28 (3.5) 3,592 (3.7) 

    Black 4,498 (18.8) 127 (15.9) 12,135 (12.4) 

    Hispanic 4,408 (18.4) 145 (18.1) 5,020 (5.1) 

    Native Hawaiian or Other Pacific Islander 38 (0.2) 1 (0.1) 233 (0.2) 

    White 12,822 (53.5) 462 (57.8) 62,979 (64.5) 

    None of the above 896 (3.7) 25 (3.1) 8,365 (8.6) 

    Unknown 243 (1.0) 9 (1.1) 4,983 (5.1) 

Clinical setting, No. (%)    

    Emergency Department 3,015 (12.6) 177 (22.1) 26,184 (26.8) 

    Immediate Care 1,985 (8.3) 118 (14.8) 11,375 (11.6) 

    Intensive Care Unit 7,920 (33.1) 102 (12.8) 15,846 (16.2) 

    Other Inpatient 4,531 (18.9) 75 (9.4) 13,987 (14.3) 

    Other Outpatient 6,509 (27.2) 328 (41.0) 30,259 (31.0) 

X-ray machine manufacturer, No. (%)    

    Carestream 20,628 (86.1) 666 (83.3) 54,926 (56.2) 

    EOS 113 (0.5) 7 (0.9) 321 (0.3) 

    GE Healthcare 989 (4.1) 50 (6.3) 22,112 (22.6) 

    Kodak 1,717 (7.2) 36 (4.5) 1,737 (1.8) 

    Siemens 227 (0.9) 21 (2.6) 1,837 (1.9) 

    Philips 275 (1.1) 20 (2.5) 1,350 (1.4) 

    Other 11 (<0.1) 0 15,368 (15.7) 

 

Demographic information for the documentation efficiency, quality peer review, and 

pneumothorax flagging cohorts of radiograph studies. The sampling strategies for each cohort are 

described in the manuscript and eMethods. “Other” manufacturers included: Agfa, Canon, 

DRGEM, Duet, Fujifilm, Hologic, Konica Minolta, Rayence, Thales, and Toshiba. 
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eTable 3: Training and evaluation set radiograph breakdown by anatomy. 

 

Anatomy 
Training Set 

(n=4,186,288) 

Held-out 

Test Set 

(n=10,000) 

Prospective 

Internal 

Test Set 

(n=10,000) 

Prospective 

Model-

Assisted 

Reads 

(n= 11,980) 

Matched 

Pre-Model 

Reads 

(n=11,980) 

Pre-Model 

Quality 

Evaluation 

Reads 

(n=400) 

Prospective 

Quality 

Evaluation 

Reads 

(n=400) 

Chest  chest 2,127,117 5,000 5,000 9,791 9,801 200 200 

Lower 

extremity 

foot 178,886 437 462 178 186 21 27 

ankle 125,870 300 283 97 107 12 15 

knee 217,182 509 830 301 279 29 38 

tibia/fibula 40,460 111 80 34 30 3 7 

femur 24,667 51 47 33 26 1 4 

toe 17,460 47 37 16 15 0 1 

Abdomen/ 

Pelvis  

abdomen 267,438 668 415 447 574 10 3 

pelvis 202,287 514 592 297 247 24 24 

 shoulder 134,107 307 486 226 157 21 23 

Upper 

extremity  

hand 122,632 284 253 108 133 30 17 

wrist 111,718 274 230 78 102 15 8 

finger 70,626 181 172 50 46 6 3 

elbow 57,763 123 94 46 47 7 8 

forearm 27,509 73 23 15 12 1 1 

humerus 17,377 40 37 18 15 2 4 

Spine  spine 331,902 838 937 167 180 21 16 

Thoracic, 

non-chest  

ribs 47,451 101 163 81 53 6 15 

sternum 1,721 4 1 2 1 0 0 

Other 

(n=149,254) 

other/ 

unspecified 
63,037 151 8 0 1 0 0 

intraoperative 27,631 66 12 6 8 0 1 

babygram 26,249 43 0 0 0 0 0 

neck 10,433 25 14 2 3 0 1 

hardware 

evaluation 
9,914 23 9 10 11 0 1 

bone age 5,525 14 0 0 0 0 0 

metastasis 

survey 
2,572 0 2 3 4 0 1 

facial 2,270 9 19 3 2 1 0 

jaw 1,623 5 6 2 1 0 1 

 

Note that the anatomy subgroup counts sum to greater than the number of studies as some studies 

pertain to multiple body parts.  
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eTable 4: Timing data per radiologist 

Radiologist ID Read count 

Mean read 

time prior to 

model (s) 

Mean read time 

with model (s) 

Read time 

speedup using 

model (s) 

Read types 

1 3267 131.2 128.4 2.83 chest* 

2 2993 143.5 84.8 58.7 chest* 

3 1927 139.7 138.9 0.84 chest* 

4 1072 133.3 135.8 -2.43 chest*, non-chest* 

5 608 85.2 77.5 7.77 chest* 

6 501 100.6 122.0 -21.4 chest*, non-chest* 

7 306 95.4 110.4 -15.0 chest* 

8 301 112.2 82.0 30.2 non-chest* 

9 183 135.9 152.8 -17.0 non-chest 

10 126 421.3 301.3 120.0 non-chest 

11 126 73.6 50.2 23.3 chest*, non-chest* 

12 117 136.4 126.4 10.0 non-chest 

13 98 262.8 272.2 -9.47 chest* 

14 67 187.0 119.4 67.6 non-chest 

15 60 234.2 157.9 76.3 non-chest 

16 60 346.6 182.3 164.3 non-chest 

17 34 160.9 126.7 34.1 chest, non-chest 

18 30 147.0 128.8 18.3 non-chest 

19 29 898.3 706.5 191.8 non-chest 

20 29 69.4 66.7 2.76 chest, non-chest 

21 26 124.9 187.8 -62.9 non-chest 

22 20 66.5 119.9 -53.4 chest 

 

Read types indicated with an asterisk were included in the peer review study, as the radiologist 

had accrued at least 10 model-assisted reads of that type by March 14, 2024. 
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eTable 5: Example model-generated reports and radiologist edits 

Procedure 

type 

Reason for 

exam 
Edited model report 

Chest AP 

Portable 

Post chest tube 

removal 

CONCLUSION(S)  

 

Support Devices: The small diameter right basilar chest tube has been removed. The tracheostomy tube, 

the NG tube, the right IJ central line, and the right PICC remain in place. The orphaned electrode fragment 

in the left subclavian vein distribution and is stable.  

Cardiac Silhouette/Mediastinum/Hila: Cardiomegaly is stable. Calcific thoracic aortic atherosclerosis is 

present.  

Lungs/Pleural Spaces: Right pneumothorax is smaller than on the prior study. Minimal left pleural 

effusion is stable. Interstitial pulmonary edema has improved. is unchanged. Subsegmental atelectasis is 

present at the lung bases.  

Chest Wall/Diaphragm/Upper Abdomen: The thoracic musculoskeletal structures and the upper abdomen 

are unchanged. 

Chest AP 

Portable 

Status post 

cardiac surgery 

CONCLUSION(S)  

 

Support Devices: The endotracheal tube, the NG tube, the right IJ Swan-Ganz catheter, the 3 mediastinal 

drains, and the temporary epicardial pacemaker electrodes remain in place.  

Cardiac Silhouette/Mediastinum/Hila: The postoperative cardiac silhouette is upper normal in size. A 

mitral valve bioprosthesis is present. Postoperative pneumomediastinum is present.  

Lungs/Pleural Spaces: Small bilateral hydropneumothoraces are present. present, the apical gas component 

of which is new. There is atelectasis in both lower lobes.  

Chest Wall/Diaphragm/Upper Abdomen: The thoracic musculoskeletal structures and the upper abdomen 

are unchanged. 

Chest AP 

Portable 

Cardiac 

evaluation 

FINDINGS 

 

Support Devices: None.  

Cardiac Silhouette/Mediastinum/Hila: The cardiac, mediastinal, and hilar contours are within normal 

limits.  

Lungs/Pleural Spaces: There is bibasilar subsegmental atelectasis. No effusion or pneumothorax is seen.  

Chest Wall/Diaphragm/Upper Abdomen: There is pneumoperitoneum, likely postoperative. There is left 

chest wall subcutaneous emphysema. 

 

 

CONCLUSION(S) 

 

1. Pneumoperitoneum, likely postoperative.  

2. Bibasilar subsegmental atelectasis. 

Chest PA 

Lateral 

Assess for 

pneumonia 

FINDINGS  

 

Support Devices: Aortic stent graft and surgical clips at the left neck. EKG leads overlie the patient.  

Cardiac Silhouette/Mediastinum/Hila: Stable cardiomediastinal contour. Stable cardiomediastinal contour. 

Aortic silhouette prominent/aneurysmal as on prior CT <DATE>. Radiographics appearance of aortic stent 

similar to previous.  

Lungs/Pleural Spaces: Linear opacities at the lateral left lung base. No new dense focal consolidation. No 

pleural effusion or pneumothorax.  

Chest Wall/Diaphragm/Upper Abdomen: The thoracic musculoskeletal structures and the upper abdomen 

are stable including elevated left hemidiaphragm. Upper abdomen is unremarkable.  

 

CONCLUSION(S)  

 

1. Left basilar opacity may represent atelectasis or scarring. No new dense focal consolidation. 
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Procedure 

type 

Reason for 

exam 
Edited model report 

Chest PA 

Lateral 

Lung 

transplant 

candidate 

CONCLUSION(S)  

 

Support Devices: None.  

Cardiac Silhouette/Mediastinum/Hila: Cardiac size is normal. Central pulmonary artery dilatation is 

present. There is calcific thoracic aortic atherosclerosis.  

Lungs/Pleural Spaces: The lungs are hyperinflated. Ill-defined opacities at the right lung base could 

represent atelectasis but pneumonia or aspiration not excluded. There are reticular opacities of the lung 

bases suggestive of fibrosis. is a poorly defined nodular focus of opacity in the lateral periphery right 

middle lobe that is new from the prior study. Subtle peripheral reticular opacity is present in the periphery 

of the lungs.  Pleural spaces clear. No pneumothorax. There is blunting of the right costophrenic angle.  

Chest Wall/Diaphragm/Upper Abdomen: The bones are demineralized. 

Left femur, 

2 views 

Fall FINDINGS  

 

No acute fracture or dislocation is identified. There is a left total knee arthroplasty without evidence of 

hardware failure. There is incompletely assessed lower lumbar spine posterior fusion. There is 

incompletely assessed left hip osteoarthritis. There are vascular calcifications.  

 

CONCLUSION(S)  

 

No acute osseous finding. 

Left 3rd 

finger, 3 

views 

Finger injury There is dorsal dislocation of the third middle phalanx at the proximal interphalangeal joint. There is 

adjacent soft tissue swelling. 

Left 

shoulder, 2 

views 

Acute pain of 

left shoulder 

FINDINGS  

 

There is Postsurgical changes of a total left shoulder hemiarthroplasty. arthroplasty. The prosthetic 

humeral head is in expected position and alignment. There is no evidence of periprosthetic fracture. There 

is cortical irregularity along the inferior aspect of the glenoid, likely secondary to heterotopic ossification. 

remodeling and bone spur. There is no significant joint effusion.  

 

CONCLUSION(S)  

 

Status post left shoulder hemiarthroplasty. 

Right knee, 

AP Lateral 

New right knee 

pain, limited 

range of 

motion 

FINDINGS  

 

There is no acute fracture or osseous malalignment. The femorotibial and patellofemoral Mild 

tricompartmental osteoarthritis of the right knee. Mild joint spaces space are preserved. narrowing of the 

medial tibiofemoral compartment. There is small osteophytes formation in the patella. There is a small 

suprapatellar joint effusion. There is diffuse vascular calcification.  

 

CONCLUSION(S)  

 

1. No acute osseous finding.  

2. Small joint effusion.  

3. Mild patellofemoral tricompartmental osteoarthritis. osteoarthritis of the right knee. 

Abdomen 

AP 

Nausea FINDINGS  

 

LINES OR TUBES: None  

LUNG BASES: The lung bases are clear.  

BOWEL GAS PATTERN: There are no abnormally dilated loops of bowel. There is a moderate colonic 

stool burden.  

CALCIFICATIONS/OTHER: An intrauterine device projects over the pelvis.  
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Procedure 

type 

Reason for 

exam 
Edited model report 

MUSCULOSKELETAL: There is posterior spinal fusion hardware at the L1-L2 level.  

 

CONCLUSION(S)  

 

As Above. 

 

Representative edited model-generated reports (additions are in underlined magenta while 

deletions are shown as red strikethroughs). AP: anteroposterior; PA: posteroanterior.   
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eTable 6: Regression outputs for mixed-effects models 

Fixed effects Estimate Standard error z value 

Read Time    

    Intercept 170.35 35.91 4.74 

    Model Type 24.96 14.09 1.77 

    Study Type 37.72 9.40 4.02 

    Model:Study Type 8.83 11.06 0.80 

Clinical Accuracy Score    

    Model Type 0.30 0.20 1.52 

    Study Type 0.83 0.24 3.50 

    Model:Study Type 0.36 0.27 1.32 

Text Quality Score    

    Model Type 0.83 0.29 1.81 

    Study Type 1.78 0.47 2.43 

    Model:Study Type 0.81 0.47 1.71 

 

Note that “Model:Study Type” denotes interaction effects. 
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eTable 7: Evaluation using automated metrics 

Dataset 
Radiograph 

type Model RadCliQ (v0) 
RadGraph 

F1 

CheXbert 

vector 
BLEU-4 

Internal held-out 

test dataset 

Chest 

(n=5,000) 

AI model 

(ours) 
2.94 

[2.88, 3.01] 
0.254 

[0.239, 0.268] 
0.469 

[0.453, 0.484] 
0.218 

[0.206, 0.229] 

Non-chest 

(n=5,000) 

AI model 

(ours) 
2.38† 

[2.33, 2.42] 
0.193† 

[0.184, 0.202] 
0.745† 

[0.733, 0.757] 
0.176 

[0.168, 0.183] 

Prospective 

internal dataset 

Chest 

(n=5,000) 

AI model 

(ours) 
3.24 

[3.18, 3.31] 
0.291 

[0.274, 0.305] 
0.454 

[0.440, 0.469] 
0.126 

[0.115, 0.136] 

Non-chest 

(n=5,000) 

AI model 

(ours) 
3.13† 

[3.08, 3.18] 
0.180† 

[0.173, 0.188] 
0.731† 

[0.721, 0.742] 
0.057 

[0.053, 0.061] 

MIMIC-CXR 

external dataset 

Chest 

(n=3,269) 

AI model 

(ours, zero-

shot) 

4.02 
[3.98, 4.05] 

0.163 
[0.158, 0.168] 

0.362 
[0.350, 0.375] 

0.021 
[0.020, 0.023] 

Flamingo-

CXR 
-- 0.205 -- 0.101 

LLaVA-Rad -- 0.294 -- 0.154 

MAIRA-1 
3.10 

[3.07, 3.14] 
0.243 

[0.237, 0.248] 
0.440 

[0.431, 0.449] 
0.142 

[0.137, 0.147] 

RayDINO 
3.07 

[3.04, 3.11] 
0.239 

[0.233, 0.246] 
0.448 

[0.440, 0.456] 
0.138 

[0.134, 0.142] 

AI model 

(ours, 

finetuned) 

3.07 
[3.03, 3.11] 

0.229 
[0.221, 0.239] 

0.457 
[0.445, 0.471] 

0.116 
[0.111, 0.120] 

MedVersa 
2.74 

[2.69, 2.79] 
0.300 

[0.291, 0.308] 
0.466 

[0.453, 0.468] 
0.160 

[0.153, 0.167] 

MAIRA-2 

13B 
2.59 

[2.56, 2.63] 
0.359 

[0.356, 0.366] 
0.513 

[0.510, 0.521] 
0.243 

[0.237, 0.249] 

 

The model was evaluated on 5,000 chest and non-chest studies each from the internal held-out 

test dataset and the prospective internal dataset using automated metrics of radiograph report 

quality. Evaluation was also performed on the MIMIC-CXR test set, a dataset of chest 

radiographs commonly used for model development and validation. Comparisons to recently 

published models are presented. Note that CheXbert, RadGraph, and RadCliQ were developed 

specifically for chest radiograph report evaluation. 

† Indicates metric developed and validated for chest radiographs only.  
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