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eMethods 1: Model development dataset

Model development was performed using 5,920,184 institutional plain film radiography studies
taken from May 1999 through June 2022. All radiograph modalities and acquisition types (e.g.

portable, fixed, etc.) were included. A patient-level 70/20/10 train/validation/test split yielded a
training set of 4,186,288 studies, a validation set of 1,147,172 studies, and a test set of 425,877
studies. A breakdown of the training set studies by anatomy type is given in eTable 4.

A structured clinical information prompt was generated from available clinical information
associated with each study by querying the electronic health record database via structured query
language scripts. First, the “PROVIDERS:” field is populated with all radiologist names
associated with interpretation of the study, separated by semicolons; the “PROCEDURE:” field
is populated with the name of the imaging procedure performed; and the “HISTORY:” field is
populated with the reason for exam documented as part of the imaging study order. Any
information that could not be identified was listed as “Unspecified”. Next, the
“COMPARISON:” field is populated with the name of the most recent prior radiograph study of
the same body part available in the database, as well as the time interval (“within 4 hours”,
“within 24 hours”, “within 1 week”, or “within X weeks”, with X denoting the number of weeks)
between the two studies. Else, if no comparison was identified, the field was populated as
“None”. Finally, a special token, “< begin report > is added to denote the end of the clinical
information prompt, after which the report body is to be generated.
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eMethods 2: Model architecture

The generative model is a multimodal encoder-decoder transformer-based model' jointly
conditioned on text and images, trained to produce free text radiology reports. Weights for the
base-size vision transformer® used as the vision encoder were initialized from a model pre-
trained on ImageNet in a self-supervised manner using DINO? with a patch size of 16
(https://huggingface.co/facebook/dino-vitb16). As radiographs are monochrome, requiring only
one color channel, the patch embeddings of this model were combined to a single channel by
summing the weights across the channel dimension.

Text decoder weights were initialized from the 125 million parameter Open Pre-trained
Transformer (OPT) * checkpoint (https://huggingface.co/facebook/opt-125m). The decoder
tokenizer was based on the default RoOBERTa’ tokenizer trained from scratch using the standard
byte-pair encoding algorithm® with a 5,000 token vocabulary size on the training dataset, with
replacement of spaces with a custom string so that splitting was not performed on spaces,
enabling encoding of commonly used phrases containing multiple words into a single token.
Finally, the special “< begin report > token was added to the vocabulary. To accommodate this
custom tokenizer, the OPT token embeddings layer was re-initialized to size 5,001 using
Kaiming Initialization. ’ Cross-attention layers were initialized from scratch using Kaiming
Initialization. Decoder position encodings were truncated to length 512.
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eMethods 3: Model training

Encoder position embeddings were interpolated to enable fine-tuning at the 1024 x 1024 input
resolution. The left half of this input image is reserved for the comparison study (or set to black
if none exists), and the right for the current study. To accommodate multi-image studies, all
images in a study underwent a rotation step to horizontal alignment, rectangular cropping of
background black pixels, scaling to the full 16-bit range, and resizing to height of 1024 pixels.
All images for a study were then tiled horizontally in a random order, then horizontally resized to
512 pixels and placed in the appropriate half of the input image. The order of tiling was
randomized by the data loader as a data augmentation step.

During training and inference, the tokenized clinical information prompt was provided to the text
decoder directly as a prompt from which generation proceeds. In training, a custom mask was
also provided to prevent the loss function from considering the clinical information prompt, so
that the only learning signal was derived from the report body.

The model was trained for 20 epochs on a machine with 4 80GB NVIDIA A100 graphics
processing units (GPUs) to optimize the image captioning loss for report findings prediction
conditioned on the input image and clinical information prompt. A learning rate of 2.75E-4,
warmup ratio of 0.025, and global batch size of 96 were used with Adam optimization with
parameters S1 of 0.9 and f1 of 0.999.
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eMethods 4: Model evaluation using automated metrics

To enable subgroup analysis of changes in documentation time with model usage by pathology,
the CheXbert labeler® was applied to identify pathologies present in final radiologist-documented
report text, taking “positive” outputs to indicate pathology presence and “negative”, “uncertain”,
and “blank” outputs to indicate pathology absence. An additional “Finding” category was
included to indicate presence of any radiographic finding by taking the inverse of the “No
finding” label. For non-chest studies, only the subgroups of “Fracture”, “Support devices”, “No
finding”, and “Finding” were used, as these pertain to non-chest radiographs. Subgroups by
radiograph anatomy were additionally investigated. Data are presented as means and 95%

confidence intervals were computed using 500 bootstrap samples.

To evaluate model performance, 5,000 chest and 5,000 non-chest studies were randomly sampled
from the held-out test dataset. Clinically-aligned metrics (CheXbert vector score, RadGraph F1,
and RadCliQ-v0) were used to evaluate quality of model-generated reports compared to the
ground truth reports using a standard chest radiograph report evaluation package. ° To
prospectively evaluate model accuracy, 5,000 chest and 5,000 non-chest studies

were randomly sampled from the set of radiographs interpreted without model

usage from November 15, 2023 to April 24, 2024 and evaluated in the same way. Reports were
generated using the same prompting scheme as in the live clinical deployment.

To evaluate model performance across pathology subgroups, the CheXbert labeler was applied as
described above to calculate pathology-specific F1 scores as well as micro- and macro-F1 scores
by comparing CheXbert labels of model outputs to those in final radiologist reports for the
prospective quality evaluation dataset, the entire prospective model-assisted dataset, and the
prospective test dataset. Data are presented as means and 95% confidence intervals were
computed using 500 bootstrap samples.

Moreover, generalization to external datasets was examined by benchmarking model
performance on MIMIC-CXR, '° a dataset of chest radiographs widely used for development and
evaluation of report generation models. Both zero-shot and fine-tuned model evaluation was
performed on the standard MIMIC-CXR!? test set of 3,269 studies. To create the clinical
information prompt, the “PROVIDERS:” field was set to “Unspecified”, the “PROCEDURE:”
field was set to “XR CHEST”, and the “HISTORY:” field was set to “None”. The
“COMPARISON:” field was set to the time difference between the study of interest and the most
recent prior study contained in the MIMIC-CXR dataset for that patient based on the DICOM
metadata. Model inference was otherwise performed using the hyperparameters previously
described. Recently described models were identified via review of pre-prints and published
literature for comparison. Further comparisons to unpublished models may be made using the
ReXrank leaderboard (https://github.com/rajpurkarlab/ReXrank). In addition, because the entire
MIMIC-CXR training dataset of 222,758 studies was used in development of all other models
referenced here, model performance was benchmarked after finetuning the model on the
MIMIC-CXR training set for 10 epochs using the hyperparameters and training strategy
previously described, albeit with a lower learning rate of 1E-4, to provide a direct comparison.
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All 95% confidence intervals for evaluations on the MIMIC-CXR test set were calculating using
500 bootstrap samples as previously described. °

Note that CheXbert, ® RadGraph, !! and RadCliQ were developed specifically for chest
radiograph report evaluation, ° while similar clinically-grounded metrics have not yet been
proposed for evaluation of non-chest radiograph reports. However, these metrics are presented as
a benchmark for future comparison, based on the ability of CheXbert and RadGraph to extract
clinical entities relevant to non-chest radiographs in the internal test set.
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eMethods 5: Ablation and model scaling evaluation

Ablation studies and the model scaling evaluation were performed by training on the MIMIC-
CXR dataset, to ensure reproducibility. The standard train, validation, and test splits were used.
Tiling and prompting were performed as previously described. A baseline model was trained
using the same hyperparameters as used for original model training; the clinical information
prompt was constructed using MIMIC-CXR data as described above. Ablation of tiling was
performed by randomly selecting only one current and one prior image (if applicable) among the
anteroposterior and posteroanterior views, if more than one image was present in a study; thus,
the extent of image resizing remained consistent across the entire dataset. Ablation of prompting
was performed by using a single prompt for each study, containing “Unspecified” for the
provider, procedure, history, and comparison fields. Inference-time ablations of tiling and
prompting were also performed by applying these ablations to the trained baseline model to
perform inference.

Model scaling was investigated by separately training the model with a higher resolution vision
encoder (ViT-base with patch size 8), as well as with a larger text decoder (OPT-350M). 4
Because the original model used a ViT-base checkpoint pre-trained using DINO, 3 for which only
ViT-small and ViT-base checkpoints are available, scaling of the vision encoder was

investigated by decreasing the patch size rather than directly increasing the encoder size (e.g., to
ViT-large).

To assess potential variation in model performance due to the degree of image tiling present in
the radiograph studies, information on number of image counts was retrieved from the EHR for
the chest and non-chest prospective non-model usage test sets. Multiple regression models were
fit to determine whether RadCliQ-v0 scores were associated with primary study and comparison
study view counts for chest and non-chest studies.
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eMethods 6: Model implementation and usage

To perform inference, relevant clinical data are automatically retrieved from EHR data;
information not available to create the clinical data prompt is denoted as “Unspecified”. Upon
receipt of an HL7 message associated with completion of radiograph acquisition, a server
downloads all available DICOM format images for the imaging study, pre-processes them, and
provides them as model input along with relevant clinical data from the HL7 message. An
appropriate comparison study is automatically identified by querying the EHR for the most
recent radiograph study examining the same body part. Inference is performed for all studies
across the health system using a machine with one 0GB NVIDIA A100 GPU at a cost of
approximately $4.00 per hour. Typical decoding'? with a parameter value of 0.9 is used. To
ensure uniform formatting of report outputs, chest and non-chest studies each use one standard
radiologist name in the clinical information prompt. The model outputs are then populated within
PowerScribe as custom fields ("metadata") and are included within a template selectable by
radiologists, either manually or by voice command, who are using the model. Because inference
completes within seconds, in the overwhelming majority of cases the model-generated report
was available immediately upon opening a study. Documentation start time was defined to be the
time at which the radiologist first opened the study.

All radiologists documented using voice dictation and individually created report templates
within PowerScribe both before and during the model implementation period. Use of the tool is
limited to attending radiologists, and radiologists must attest to independently interpreting the
imaging and amending the draft report as needed, mimicking their workflow for revising trainee-
produced reports. Importantly, draft Al reports are only visible to approved radiologists, unlike
preliminary resident reads which are accessible to all providers, and at no point does the draft Al
report serve as the sole interpretation for any imaging.
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eMethods 7: Power analysis for peer review study

Considering the large sample size of reports included for documentation timing efficiency, it was
not feasible to perform peer review for the entire dataset. Therefore, for the peer review study, an
initial power analysis was conducted (G*Power v3.1.9.6, www.psychologie.hhu.de) to detect an
effect size of 0.15 (similar in magnitude to a previous study'?) with 80% power with fixed effects
of model usage (model, no model) and study type (chest, non-chest). It was determined that a
total sample size of 351 would be needed to detect the study type by model usage interaction
effects to a small (0.3) effect size. A sample size of 400 randomly sampled studies was collected
to allow for a 15% attrition rate due to radiologists being excluded from evaluating their own
reads.

© 2025 Huang J et al. JAMA Network Open.



eMethods 8: Peer review evaluation scale and platform

The rating scales for peer review measurement of clinical accuracy and textual quality of
radiograph reports were based on a previously published scale® but with separation of the
clinical and textual quality components. A similar system is used for peer review of studies at
our institution. Similarly to the RADPEER scoring system widely used in quality assurance for
radiologist interpretations, the scale differentiates between reporting discrepancies with and
without clinical significance. * In doing so, the scale separates studies by acceptability for
informing clinical patient care.

To evaluate clinical accuracy and textual quality, radiologists were instructed to independently
interpret the study of interest given the imaging data provided using their normal workflow, then
evaluate clinical accuracy and text quality of the given report using the rating scales shown in
Box 1. Instructions provided to the reviewers are shown in Box 2. Radiologists used a web
application (eFigure 1) to perform all grading. Upon opening of a study, the relevant imaging and
comparison studies automatically open in a test instance of Visage (Richmond, Australia). For
each graded study, all radiographs of the same body part obtained up to a month prior were
included, as well as related anatomy (e.g. for a wrist study, hand and forearm radiographs were
included, as well as contralateral studies). Additionally, the five most recent radiographs of the
same body part were identified and included, if not already contained within the one-month
interval. Moreover, if the graded study specified a comparison study that was not already
identified by the prior steps, then that study was separately identified and included. All report
text, image, and Digital Imaging and Communications in Medicine (DICOM) data was
deidentified, with random shift of dates (eFigure 1) and redaction of any other identifying
information. The same date shift was used for all comparison studies so that relative time
intervals remained accurate. If a clinical score of less than four was given, additional prompts
appeared for the radiologist to specify all reasons for disagreement.
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Box 1: Instructions provided to radiologists performing peer-review evaluation of imaging
studies.

A. Clinical accuracy ratings

a.  For clinical accuracy, consider how the clinical findings pertinent to the case are presented by the report,
based on your independent interpretation of the imaging study

i. A score of 4 indicates complete agreement with the clinical findings contained in the study

ii. A score of 3 indicates that critical findings are appropriately reported, but one or more non-
critical findings are not

iii. A score of 2 indicates that non-critical findings are appropriately reported, but one or more
critical findings are not

iv. A score of 1 indicates that both critical and non-critical findings are inappropriately reported, or
that the majority of study findings are inappropriately reported

b. A critical finding is defined to be any finding in the imaging study which would change the immediate
management of the patient if reported incorrectly, in your clinical judgement

c. Ifthe clinical accuracy score is <4, please indicate all reasons for your disagreement using the
checkboxes, and provide a brief explanation for each discrepancy (e.g. “Pneumothorax is on the right, not
left. A left pleural effusion is not reported.”)

B. Text quality ratings

a.  For textual quality, only consider aspects of the report text itself (i.e., imagine that there are no images
available, and you are only judging the quality of the report text in isolation)

i. A score of 3 indicates that no changes to grammar, wording, or formatting are needed
ii. A score of 2 indicates that the report requires changes which could reasonably be revised in the
typical clinical workflow
iii. A score of 1 indicates that the report requires extensive changes which necessitate rewriting the
entire report from scratch

© 2025 Huang J et al. JAMA Network Open.



eMethods 9: Pneumothorax prioritization strategy

The prioritization system was designed to identify radiograph studies for which the Al draft and
available EHR indicated a clinically significant, new pneumothorax. This ran in a “shadow
deployment” in real time alongside the live model deployment workflow. Thus, studies were
prioritized in real time, but no clinician notification occurred; rather, information on flagged
studies was logged to the Al model monitoring database. All studies for which a model-generated
report was available underwent prioritization. This included both chest and non-chest studies due
to the possibility of a pneumothorax being visualized on a shoulder, rib, or abdominal
radiograph.

The prioritization strategy is as follows. First, reports which did not contain the case-insensitive
substring “pneumothora” were excluded. Next, studies with a reason for exam or for which the
comparison study reason for exam contained any “Reason for exam” substring given in eTable 1
were excluded. Moreover, studies were excluded if the patient had been admitted to any surgical
unit or the cardiothoracic intensive care unit within the past four days. At this point, the model-
generated report text was classified as containing or not containing a pneumothorax using
RadGraph!! to identify presence of any of the following clinical entities: “pneumothorax”,
“pneumothoraces”, “hydropneumothorax”, “hydropneumothoraces”. Both “uncertain” and
“definitely present” entities, per RadGraph, were considered to indicate presence of a
pneumothorax; studies not containing a pneumothorax per RadGraph were excluded. Next,
patients with known pneumothoraces were excluded by examining the model and any prior
imaging report text in the past four days for any “Chest tube” substring given in eTable 1, and
were also excluded if a pneumothorax was present, per RadGraph. Finally, to avoid prioritizing
clinically insignificant or stable pneumothoraces, studies were excluded if the model report
contained any sentence with both the substring “pneumothora” as well as one of the “Clinical
context” substrings.

To identify the ground truth set of studies with clinically significant pneumothorax for which a
radiologist notified the clinical care team, all studies interpreted during the live prioritization
period of February 5, 2024 to April 24, 2024 were retrospectively examined. Reports were
searched for instances of clinical team notification by performing a text search for a custom tag
which radiologists at our institution use to indicate presence of a critical finding, or any of the
following case-insensitive substrings: “discussed”, “sent”, “text”, “called”, “page”, “notif”,
“communic”, “given to”, “relay”, “convey”, “delivered”, * aware”, “talk”. The resultant reports
were parsed using RadGraph to identify those containing a pneumothorax, as above, and
prioritized using the system previously described. Flagged studies for which report text
contained both a pneumothorax and documentation of clinical team notification were confirmed
by manual review. Time to clinical team notification was calculated as the interval from study
acquisition completion to documented time of this notification, if provided in the report text; if
not, the time at which the study was first opened by the radiologist was used, as logged in
electronic health record data.
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eMethods 10: Secondary statistical analyses

To further examine the relationship between potential factors influencing documentation time
with the Al model, a multiple regression model was fit (stats package in R, v4.3.0) to
documentation time with potential predictor values of: number of word edits, RadGraph F1°
scores (to measure extent of clinically relevant content edited), and study type with covariates of
RadGraph!! entity and relation count (to measure clinical content of the report), the original Al-
generated report word count, study critical or non-critical status, radiologist, proportion of
radiologist pre-model reads with a resident, and years of radiologist clinical practice experience.
All non-significant covariates were removed from the model. Word count was calculated by first
extracting the Findings and/or Impressions sections of the report text (excluding header study
background information and footer attestation or signature text). Word edits were calculated by
extracting the Findings and/or Impressions sections, then using the difflib module (Python
version 3.10.6) to count word-level differences between the AI model and final radiologist
reports. Word edit count was used instead of word error rate as a measure of report editing as the
latter resulted in a lower model R? value and greater residual sum of squares; moreover, word
error rate may be derived from word edit count and generated report length, both of which were
included in the model. RadGraph information quantity was defined as the total number of
anatomy and relation entities identified in the model-generated report within the clinical entity
graph produced by RadGraph. RadGraph F1 was calculated using a standard library’ by
comparing model reports to final radiologist reports as the ground truth. “Critical” studies were
defined to be those containing any of the following CheXbert pathology categories: “Enlarged
cardiomediastinum”, “Lung opacity”, “Consolidation”, “Pneumonia”, “Pneumothorax”, and
“Fracture”, while “Non-critical” studies were all other studies; this categorization was arrived at
by radiologist consensus.

The distributions of radiograph type were compared between pre- and post-model datasets using
a Chi-Square Goodness of Fit Test after categorizing all radiographs into the following
categories: chest, abdomen/pelvis, spine, lower extremity, upper extremity, thorax-
musculoskeletal, and other. Because a single radiograph could appear in multiple categories, Chi-
Square tests were performed individually for each body part with Bonferroni-Holm corrections.

Subgroup analyses were also completed to evaluate potential differences in peer review quality
scores by pathology with a cumulative link mixed model fit with the clinical score on reports
subgrouped by presence of CheXbert pathology categories. Comparisons between subgroups are
reported on the logit scale. The “Consolidation” category was not included in this subgroup
analysis due to limited data points. To investigate the types of errors, a generalized logistic
mixed-effects model was fit on the binary response variable with fixed effects of time and study
type. Kendall’s W was employed to calculate clinical score- and text score rating concordance
using DescTools (version 0.99.49) in R using corrections for tied rankings.
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eAppendix 1: Control group radiologist documentation efficiency

The control group of studies interpreted by the cohort of radiologists with no model usage
consisted of a pre-model implementation and a post-model implementation set of studies, both of
which comprised 10,897 studies of which 8,683 (79.7%) were chest and 2,214 (20.3%) were
non-chest radiographs. The chest radiographs were interpreted by 12 radiologists reading a
median of 204 studies (IQR 49.5-924) and the non-chest radiographs were interpreted by 15
radiologists reading a median of 60 studies (IQR 28-122).

In the non-model control cohort, there was a significant main effect of procedure type on
documentation time (¥*=14.58, df=1, P<0.001), with documentation time for non-chest studies
being significantly slower than chest studies (by 133.0+34.8 s). The main effect of model usage
was not significant (y>=3.65, df=1, P=0.06), with studies before (184+25.0 s) not being
significantly different than studies after model implementation (194.0+25.0 s). The time by study
type interaction was not significant (¥*=0.26, df=1, P=0.61). Thus, there was no evidence for any
change in documentation efficiency during the study period for radiologists who did not use the
model.
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eAppendix 2: Factors associated with documentation efficiency improvement

We hypothesized that documentation efficiency might be associated with measures of generated
report content (RadGraph information quantity and word count) and quality (RadGraph F1 score
and word edit count), due to time required to verify report; with presence of critical findings in
reports, due to study complexity; and with radiologist seniority and experience editing trainee
reports, due to expertise and familiarity with editing in the clinical workflow. On secondary
analysis investigating the association of these factors with study documentation time, the
multiple regression model was significant (F=145.0, P<0.001, adjusted R?>=0.25). Word edit
count was significantly associated with documentation time (1.16+0.07, t=17.1, P<0.001)
although RadGraph F1 was not. RadGraph information quantity (1.50+0.08, t=19.0, P<0.001),
model-generated report word count (-0.56+0.07, t=-8.09, P<0.001), and non-chest procedure
type (51.6+£8.95, t=5.76, P<0.001) were significantly associated with documentation time, while
critical finding presence, years of experience, and proportion of pre-model reads interpreted with
a resident were not.
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eAppendix 3: Peer review radiologist information

Among the 800 reviewed studies, 10 radiologists were represented (6 reading chest, 1 reading
non-chest, and 3 reading both study types). The chest studies were evaluated by two generalist
and two cardiothoracic subspecialty-trained radiologists, and the non-chest studies by four
musculoskeletal subspecialty-trained radiologists. Raters had a median of 6.5 years of post-
residency practice experience (range: 3-17 years).
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eAppendix 4: Cumulative link mixed model outputs for textual quality peer review

The main effect of study type was significant (y>=11.59, df=1, P=0.001), with chest studies rated
significantly higher than non-chest studies (by 1.37+0.82, z=3.25, P=0.001). The model usage by
study type interaction was also significant (¥*=5.05, df=1, P=0.02). Post-hoc tests revealed that
chest textual ratings were significantly greater with the model compared to without (by
0.83+0.57, z=2.9, P=0.02). Chest studies with the model were also rated significantly greater
than non-chest studies with (by 1.77+0.92, z=3.7, P=0.001) and without (by 1.80+0.92, z=3.8,
P=0.001) the model. No other comparisons were significantly different.
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eAppendix 5: Evaluation by automated metrics of radiograph quality

Accuracy of the model-generated reports for pathology classification for both chest and non-
chest studies was investigated by using the CheXbert labeler (eFigure 2), demonstrating
performance competitive with or exceeding that of recently reported models across individual
pathologies and aggregated macro-F1 score. !>!° Overall model performance for report
generation was characterized by evaluation on the internal held-out and prospective test sets as
well as the external MIMIC-CXR test set (eTable 7), showing competitive performance of our
model compared to recently reported approaches. '%2!

Moreover, ablation studies were performed to characterize the impact of model architecture
design on performance, as measured by automated metrics of report quality (eFigure 4). Ablation
studies were performed by training the model from scratch on the MIMIC-CXR dataset, to
enable independent replication. Overall model performance was decreased substantially with
ablation of prompting but remained consistent with ablation of tiling, though performance was
higher with tiling than without for studies containing multiple views. Similarly, ablation of
prompting during inference decreased overall performance while ablation of tiling during
inference did not.

Additionally, considering the relatively small size of the model compared to recently reported

approaches to radiograph report generation, we investigated the effect of increasing the model

size on performance, using the MIMIC-CXR dataset (eFigure 4). These experiments show that
increasing encoder resolution and decoder size both improve model performance.
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eFigure 1: Peer review web application

© @ N @ o B

Study Number 0

Report text:

EXAM: LEFT HAND <2023-10-10> 4:03 PM
TECHNIQUE: 3 x-rays of the left hand.
HISTORY: Left hand pain after fall
COMPARISON: <2018-10-08>

FINDINGS:

There is dorsal left hand soft tissue swelling at the level of the metacarpals and MCP joints. No fracture or dislocation identified.

The radiocarpal joints, CMC joints and interphalangeal jeints are normal. There are no erosions of foreign bodies.

IMPRESSION:

1. Dorsal left hand soft tissue swelling. No acute bone abnormality

Regarding only the clinical accuracy of the report:

@) 3) (2)

All findings are AGREE with ¢l
appropriately reported. findiny
DISAGREE with non-

DISAGREE with gritical

o
critical findings. findings.

()]
DISAGREE with the

majority of the report.

* Note that a critical finding refers to a finding that would change the immediate management of the patient if

reported incorrectly
Please indicate all reasons for disagreement with clinical accuracy of report:

[[] Contextualized inappropriately (e.g. location, severity, change from prior)
[[] Extraneous finding is reported which is not present

[C] Omitted finding should be included in report

Description of discrepancy

Submit

Regarding only the textual formatting of the report:

@ @ m

Report uses appropriate Rewrite needed.

word choice and
formatting.

Minor wording or
formatting changes
needed (e.g. grammar,
organization).

Screenshot of the peer review web application used by radiologists to grade report quality. The
checkboxes and text entry field for description of discrepancy are only shown when a rating of
less than four is selected for clinical accuracy. Note that all dates were shifted by a randomized

interval.
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eFigure 2: Model performance across pathology subgroups

mmm Chest mmm Non-chest

Enlarged Enlarged Enlarged
cardiomediastinum cardiomediastinum cardiomediastinum
(n=1834) (n=33) (n=342)
Cardiomegaly Cardiomegaly Cardiomegaly
(n=1742) (n=38) (n=511)
Lung opacity Lung opacity Lung opacity
(n=2649) (n=58) (n=1155)
Lung lesion Lung lesion Lung lesion
(n=403) (n=9) (n=223)
Edema Edema Edema
(n=1529) (n=20) (n=159)
Consolidation Consolidation Consolidation
(n=163) (n=2) (n=74)
Pneumonia Pneumonia Pneumonia
(n=496) (n=5) (n=137)
Atelectasis Atelectasis Atelectasis
(n=3711) (n=58) (n=545)
Pneumothorax Pneumothorax Pneumothorax

(n=816) (n=10) (n=30)
Pleural effusion Pleural effusion

(n=46) (n=429)

Pleural effusion
(n=3569)

CheXbert Label

Pleural other
(n=146)

Pleural other

Pleural other
(n=501) (n=16)

n=

Fracture
(n=194 | n=204)

Fracture
(n=7 | n=23)

Fracture
(n=138 | n=231)

Support devices
(n=1816 | n=1695)

Support devices
(n=168 | n=30)

Support devices
(n=8482 | n=721)

No finding
(n=1770 | n=1423)

No finding
(n=44 | n=45)

No finding
(n=1674 | n=250)
Micro-F1

Micro-F1 Micro-F1

Macro-F1 Macro-F1 Macro-F1
0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Prospective reads with model, Prospective reads with model, peer reviewed, Prospective non-model reads,
(Chest: n=9791 | Non-chest: n=2189) (Chest: n=200 | Non-chest: n=200) {Chest: n=5000 | Non-chest: n=5000)

CheXbert F1 Score

Model performance was evaluated across pathology subgroups by calculating CheXbert F1
scores as well as micro- and macro-averaged F1 scores based on outputs of the CheXbert labeler,
for the prospective model usage dataset (left), the prospective peer review quality evaluation
subset (center), and the prospective test dataset of reads documented without model usage
(right). F1 scores were calculated using model-generated reports as the prediction and final
radiologist reports, either derived by editing the model-generated report (left and center panels)
or independently documented without knowledge of the model-generated reports (right), as
ground truth. The prospective non-model macro-F1 score of 0.426 for chest studies, which
measures overall performance averaged across all 14 pathology categories, demonstrates
performance competitive with or exceeding the previously reported state of the art. 1>17! For
subgroups including both chest and non-chest studies, the chest study count is listed first,
followed by the non-chest study count.
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eFigure 3: Documentation time change by radiograph subgroup
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5 . (n=2189) !
Pleural effusion | | e 0.5 1.0 1.5 2.0
(n=3569) ! 3 Documentation
i time (4)
Pleural other | 1
(n=501) —*
1 .
1 H
Fracture | A
(n=138 | n=231) | o+
1
Support devices | l’*
(n=8482 | n=721) | &1 |
1 5
No finding | H— |
(n=1674 | n=250) :*F —
| .
Finding | : gl
(n=8117 | n=1939) \ :

0.6 0.8 1.0 1.2 1.4

Documentation
time ({)

Documentation time improvement as ratio of post-model documentation time to pre-model
documentation time by pathology subgroups (left) and anatomy subgroups (right) of the
prospective timing dataset (n=11,980 studies) identified using the CheXbert labeler. Data are
presented as means and 95% confidence intervals were computed using 500 bootstrap samples.
Only the “Fracture”, “Support devices”, “No findings”, and “Finding” categories are considered
for non-chest studies, as the others are not relevant to non-chest studies. The dashed black line
shows the overall documentation time over the entire dataset. The dotted red line indicates no
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change in documentation time, with data points to the left reflecting faster documentation with
the Al model (indicated by the downward arrow, |). For subgroups including both chest and non-
chest studies, the chest study count is listed first, followed by the non-chest study count.
Diamond markers indicate that the data point is an aggregate of other subgroups shown above. A
comprehensive breakdown of radiograph anatomy types is provided in eTable 4.
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eFigure 4: Pneumothorax flag criteria

Model-generated report

Cardiac Silhouette/Mediastinum/Hila: . &

The cardiac, mediastinal, and hilar

contours are wWithin normal limits.
Lungs/PleurallSpaces: There is a [Eigg—
left . Minor atelectasis is

present in the basilar left lung. The right

lung is clear. S A
Chest Wall/Diaphragm/Upper

Abdomen: The thoracic musculoskeletal

structures and the upper abdomen are

age-appropriate in appearance.

CONCLUSION(S): x

1. There is a large left pneumothorax.

?

Screened imaging
Patient location — 9
L @ — Prior report —0®

EHR database query

Pneumothorax flag
FINDINGS: criteria
Support Devices: None. RadGraph

entity present

Significant
pneumothorax

No chest
tube present

No known
pneumothorax

Not post-
surgical patient

No prior
pneumothorax

Radiograph studies containing a clinically significant and unexpected pneumothorax (red inset)
are identified in real time by examination of the Al model-generated report and relevant data
from the hospital EHR. The screening criteria were designed to maximize relevance of

prioritized pneumothoraces by excluding patients with known pneumothoraces, patients who
recently underwent surgery, and patients with subtle or radiographically uncertain

pneumothoraces unlikely to impact clinical care.
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eFigure 5: Ablation studies and model scaling investigation

a Model
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a, Impacts of image tiling and custom prompting were investigated via ablation studies
performed by training the model from scratch on the MIMIC-CXR database. When trained
without tiling, the model demonstrates comparable performance to the baseline across all four
evaluated metrics. However, the model trained without prompting demonstrates degraded
performance. b, Subgroups of the test set based on number of views in the current study views
demonstrate slightly improved performance for studies with multiple views when the model is
trained with tiling, compared to without. ¢, Inference-time ablations of tiling and prompting
demonstrate similar performance without tiling but worse performance without prompting. d,
Scaling model size by increasing encoder resolution or increasing decoder size improves

performance.
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eFigure 6: Flowchart for pneumothorax-flagging study inclusion

Shown is the cohort of model-generated radiograph reports screened for presence of clinically
significant and unexpected pneumothorax, along with numbers of inclusions and exclusions by
flag criteria.
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v
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© 2025 Huang J et al. JAMA Network Open.



eTable 1: Prioritization text search exclusions

Clinical information Substring

CEINT3

Chest tube “chest tube”, “pigtail”, “pleural catheter”, “pleurx”

CLINTS CLINT3 CLINTS

“chest tube”, “transplant”, “thoracic decompress”, “thoracent”, “postop”, “post op”, “post-
op”, “ surg”, “postsurg”, “ oht”, “ ct remov”, “lung tx”, “biopsy”, “ bx”, “lobectom”, * vats”,
“wedge resec”, “segmentectomy”, “pleurodesis”, “follow-up pneumothorax”, “follow up

pneumothorax”, “fu pneumothorax”, “f/u pneumothorax”

Reason for exam

CLINT3 CEINT3 CLIT3 9 < EERNTS

“decrease”, “stable”, “smaller”, “improve”, “resolv”, “resolution”, “suggestion”, “subtle”,

99 ¢

Clinical context o ey s »
'minimal”, “tiny”, “trace

Substring search (case insensitive) used to exclude model-generated report text and clinical
information.
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eTable 2: Study demographic information

Number of unique patients
Age, mean (SD), y
Sex, No. (%)
Female
Male
Other
Unknown
Race and ethnicity, No. (%)
American Indian or Alaska Native
Asian
Black
Hispanic
Native Hawaiian or Other Pacific Islander
White
None of the above
Unknown
Clinical setting, No. (%)
Emergency Department
Immediate Care
Intensive Care Unit
Other Inpatient
Other Outpatient
X-ray machine manufacturer, No. (%)
Carestream
EOS
GE Healthcare
Kodak
Siemens
Philips
Other

Study cohort

Documentation
efficiency (n=23,960)

14,460
59.6 (17.5)

11,689 (48.8)
12,268 (51.2)
3 (<0.1)

0

60 (0.3)
995 (4.2)
4,498 (18.8)
4,408 (18.4)
38(0.2)
12,822 (53.5)
896 (3.7)
243 (1.0)

3,015 (12.6)

1,985 (8.3)
7,920 (33.1)
4,531 (18.9)
6,509 (27.2)

20,628 (86.1)
113 (0.5)
989 (4.1)

1,717 (7.2)
227 (0.9)
275 (1.1)
11 (<0.1)

Quality peer review

(n=800)
800
57.5 (19.6)

457 (57.1)
343 (42.9)
0
0

3(0.4)
28 (3.5)
127 (15.9)
145 (18.1)
1(0.1)
462 (57.8)
25(3.1)
9 (1.1)

177 (22.1)
118 (14.8)
102 (12.8)
75 (9.4)
328 (41.0)

666 (83.3)
7(0.9)
50 (6.3)
36 (4.5)
21 (2.6)
20 (2.5)

0

Pneumothorax

flagging (n=97,651)

73,881
60.5 (18.1)

54,088 (55.4)
43,535 (44.6)
19 (<0.1)

9 (<0.1)

344 (0.4)
3,592 (3.7)
12,135 (12.4)
5,020 (5.1)
233(0.2)
62,979 (64.5)
8,365 (8.6)
4,983 (5.1)

26,184 (26.8)
11,375 (11.6)
15,846 (16.2)
13,987 (14.3)
30,259 (31.0)

54,926 (56.2)
321(0.3)
22,112 (22.6)
1,737 (1.8)
1,837 (1.9)
1,350 (1.4)
15,368 (15.7)

Demographic information for the documentation efficiency, quality peer review, and

pneumothorax flagging cohorts of radiograph studies. The sampling strategies for each cohort are

described in the manuscript and eMethods. “Other” manufacturers included: Agfa, Canon,
DRGEM, Duet, Fujifilm, Hologic, Konica Minolta, Rayence, Thales, and Toshiba.
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eTable 3: Training and evaluation set radiograph breakdown by anatomy.

. Prospective Pre-Model Prospective
.. Held-out Prospective Model- Matched Quality Quality
Training Set Internal . Pre-Model : :
Anatomy _ Test Set Assisted Evaluation  Evaluation
(n=4,186,288) _ Test Set Reads
(n=10,000) (n=10,000) Reads (n=11,980) Reads Reads
i (n=11,980) ’ (n=400) (n=400)
Chest chest 2,127,117 5,000 5,000 9,791 9,801 200 200
foot 178,886 437 462 178 186 21 27
ankle 125,870 300 283 97 107 12 15
Lower knee 217,182 509 830 301 279 29 38
extremity tibia/fibula 40,460 111 80 34 30 3 7
femur 24,667 51 47 33 26 1 4
toe 17,460 47 37 16 15 0 1
Abdomen/ abdomen 267,438 668 415 447 574 10 3
Pelvis pelvis 202,287 514 592 297 247 24 24
shoulder 134,107 307 486 226 157 21 23
hand 122,632 284 253 108 133 30 17
wrist 111,718 274 230 78 102 15 8
Upper finger 70,626 181 172 50 46 6 3
extremity 5y 57,763 123 94 46 47 7 8
forearm 27,509 73 23 15 12 1 1
humerus 17,377 40 37 18 15 2 4
Spine spine 331,902 838 937 167 180 21 16
Thoracic, ribs 47,451 101 163 81 53 6 15
non-chest  giornym 1,721 4 1 2 1 0 0
other/ 63,037 151 8 0 1 0 0
unspecified
intraoperative 27,631 66 12 6 8 0 1
babygram 26,249 43 0 0 0 0 0
neck 10,433 25 14 2 3 0 1
Other hardware
(n=149,254)  evaluation 9.914 23 9 10 1 0 !
bone age 5,525 14 0 0 0 0 0
metastasis 2572 0 2 3 4 0 1
survey
facial 2,270 9 19 3 2 1 0
jaw 1,623 5 6 2 1 0 1

Note that the anatomy subgroup counts sum to greater than the number of studies as some studies
pertain to multiple body parts.
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eTable 4: Timing data per radiologist

Mean read Mean read time Read time

Radiologist ID  Read count time prior to with model (s) speedup using Read types
model (s) model (s)
1 3267 131.2 128.4 2.83 chest*
2 2993 143.5 84.8 58.7 chest*
3 1927 139.7 138.9 0.84 chest*
4 1072 133.3 135.8 -2.43 chest*, non-chest*
5 608 85.2 77.5 7.77 chest*
6 501 100.6 122.0 214 chest*, non-chest*
7 306 95.4 110.4 -15.0 chest*
8 301 112.2 82.0 30.2 non-chest*
9 183 135.9 152.8 -17.0 non-chest
10 126 4213 301.3 120.0 non-chest
11 126 73.6 50.2 233 chest*, non-chest*
12 117 136.4 126.4 10.0 non-chest
13 98 262.8 272.2 -9.47 chest*
14 67 187.0 119.4 67.6 non-chest
15 60 234.2 157.9 76.3 non-chest
16 60 346.6 182.3 164.3 non-chest
17 34 160.9 126.7 34.1 chest, non-chest
18 30 147.0 128.8 18.3 non-chest
19 29 898.3 706.5 191.8 non-chest
20 29 69.4 66.7 2.76 chest, non-chest
21 26 124.9 187.8 -62.9 non-chest
22 20 66.5 119.9 -53.4 chest

Read types indicated with an asterisk were included in the peer review study, as the radiologist
had accrued at least 10 model-assisted reads of that type by March 14, 2024.
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eTable 5: Example model-generated reports and radiologist edits

Procedure Reason for Edited model report
type exam

Chest AP Post chest tube ~ CONCLUSION(S)

Portable removal
Support Devices: The small diameter right basilar chest tube has been removed. The tracheostomy tube,
the NG tube, the right 1J central line, and the right PICC remain in place. The orphaned electrode fragment
in the left subclavian vein distribution and is stable.
Cardiac Silhouette/Mediastinum/Hila: Cardiomegaly is stable. Calcific thoracic aortic atherosclerosis is
present.
Lungs/Pleural Spaces: Right pneumothorax is smaller than on the prior study. Minimal left pleural
effusion is stable. Interstitial pulmonary edema has improved: is unchanged. Subsegmental atelectasis is
present at the lung bases.
Chest Wall/Diaphragm/Upper Abdomen: The thoracic musculoskeletal structures and the upper abdomen
are unchanged.

Chest AP Status post CONCLUSION(S)

Portable cardiac surgery

Chest AP
Portable

Chest PA
Lateral

Cardiac
evaluation

Assess for
pneumonia

Support Devices: The endotracheal tube, the NG tube, the right [J Swan-Ganz catheter, the 3 mediastinal
drains, and the temporary epicardial pacemaker electrodes remain in place.

Cardiac Silhouette/Mediastinum/Hila: The postoperative cardiac silhouette is upper normal in size. A
mitral valve bioprosthesis is present. Postoperative pneumomediastinum is present.

Lungs/Pleural Spaces: Small bilateral hydropneumothoraces are present. present; the apieal gas eomponent
of whieh is new- There is atelectasis in both lower lobes.

Chest Wall/Diaphragm/Upper Abdomen: The thoracic musculoskeletal structures and the upper abdomen
are unchanged.

FINDINGS

Support Devices: None.

Cardiac Silhouette/Mediastinum/Hila: The cardiac, mediastinal, and hilar contours are within normal
limits.

Lungs/Pleural Spaces: There is bibasilar subsegmental atelectasis. No effusion or pneumothorax is seen.
Chest Wall/Diaphragm/Upper Abdomen: There is pneumoperitoneum, likely postoperative. There is left
chest wall subcutaneous emphysema.

CONCLUSION(S)

1. Pneumoperitoneum, likely postoperative.
2. Bibasilar subsegmental atelectasis.

FINDINGS

Support Devices: Aortic stent graft and surgical clips at the left neck. EKG leads overlie the patient.
Cardiac Silhouette/Mediastinum/Hila: Stable cardiomediastinal contour. Stable eardiomediastinal contour:
Aortic silhouette prominent/aneurysmal as on prior CT <DATE>. Radiographics appearance of aortic stent
similar to previous.

Lungs/Pleural Spaces: Linear opacities at the lateral left lung base. No new dense focal consolidation. No
pleural effusion or pneumothorax.

Chest Wall/Diaphragm/Upper Abdomen: The thoracic musculoskeletal structures and the upper abdomen
are stable including elevated left hemidiaphragm. Upper abdomen is unremarkable.

CONCLUSION(S)

1. Left basilar opacity may represent atelectasis or scarring. No new dense focal consolidation.

© 2025 Huang J et al. JAMA Network Open.



Procedure
type

Reason for
exam

Edited model report

Chest PA
Lateral

Left femur,
2 views

Left 31
finger, 3
views

Left
shoulder, 2
views

Right knee,
AP Lateral

Abdomen
AP

Lung
transplant
candidate

Fall

Finger injury

Acute pain of
left shoulder

New right knee
pain, limited
range of
motion

Nausea

CONCLUSION(S)

Support Devices: None.

Cardiac Silhouette/Mediastinum/Hila: Cardiac size is normal. Central pulmonary artery dilatation is
present. There is calcific thoracic aortic atherosclerosis.

Lungs/Pleural Spaces: The lungs are hyperinflated. I1l-defined opacities at the right lung base could
represent atelectasis but pneumonia or aspiration not excluded. There are reticular opacities of the lung
bases suggestive of fibrosis. is a peerly defined nodular focus of opacity-in the lateral periphery right
of the langs: Pleural spaces clear. No pneumothorax. Fhere is blunting of the right costophrenie angle-
Chest Wall/Diaphragm/Upper Abdomen: The bones are demineralized.

FINDINGS

No acute fracture or dislocation is identified. There is a left total knee arthroplasty without evidence of
hardware failure. There is incompletely assessed lewer lambar spine pesterior fuston- There is
incompletely assessed left hip osteoarthritis. There are vascular calcifications.

CONCLUSION(S)

No acute osseous finding.

There is dorsal dislocation of the third middle phalanx at the proximal interphalangeal joint. There is
adjacent soft tissue swelling.

FINDINGS

There is Postsurgical changes of a total left shoulder hemiarthroplasty- arthroplasty. The prosthetic
humeral head is in expected position and alignment. There is no evidence of periprosthetic fracture. There

is cortical irregularity along the inferior aspect of the glenoid, likely secondary to heterotopie ossification-
remodeling and bone spur. There is no significant joint effusion.

CONCLUSION(S)

Status post left shoulder hemiarthroplasty.

FINDINGS

There is no acute fracture or osseous malalignment. The femerotibial and pateHofemeral Mild

medial tibiofemoral compartment. There is small osteophytes formation in the patella. There is a small
suprapatellar joint effusion. There is diffuse vascular calcification.

CONCLUSION(S)

1. No acute osseous finding.
2. Small joint effusion.
3. Mild patellefemeral tricompartmental esteearthritis: osteoarthritis of the right knee.

FINDINGS

LINES OR TUBES: None

LUNG BASES: The lung bases are clear.

BOWEL GAS PATTERN: There are no abnormally dilated loops of bowel. There is a moderate colonic
stool burden.

CALCIFICATIONS/OTHER: An intrauterine device projects over the pelvis.
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Procedure Reason for

Edited model report
type exam

MUSCULOSKELETAL: There is posterior spinal fusion hardware at the L1-L2 level.
CONCLUSION(S)

As Above.

Representative edited model-generated reports (additions are in underlined magenta while
deletions are shown as red strikethroughs). AP: anteroposterior; PA: posteroanterior.
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eTable 6: Regression outputs for mixed-effects models

Fixed effects Estimate Standard error z value

Read Time

Intercept 170.35 3591 4.74

Model Type 24.96 14.09 1.77

Study Type 37.72 9.40 4.02

Model:Study Type 8.83 11.06 0.80
Clinical Accuracy Score

Model Type 0.30 0.20 1.52

Study Type 0.83 0.24 3.50

Model:Study Type 0.36 0.27 1.32
Text Quality Score

Model Type 0.83 0.29 1.81

Study Type 1.78 0.47 2.43

Model:Study Type 0.81 0.47 1.71

Note that “Model:Study Type” denotes interaction effects.
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eTable 7: Evaluation using automated metrics

Radiograph RadGra
. ph CheXbert .
Dataset type Model RadCliQ (v0) F1 vector BLEU-4
Chest Al model 2.94 0.254 0.469 0.218
Internal heldeout  (=5-000) (ours) [2.88,3.01] [0.239, 0.268] [0.453, 0.484] [0.206, 0.229]
test dataset Non-chest Al model 2.38% 0.193% 0.745% 0.176
(n=5,000) (ours) [2.33,2.42] [0.184, 0.202] [0.733,0.757] [0.168, 0.183]
Chest Al model 3.24 0.291 0.454 0.126
Prospective (n=5,000) (ours) [3.18,3.31] [0.274, 0.305] [0.440, 0.469] [0.115, 0.136]
internal dataset N chest Al model 3.131 0.180 0.731f 0.057
(n=5,000) (ours) [3.08, 3.18] [0.173,0.188] [0.721, 0.742] [0.053, 0.061]
Al del
(Our's“‘;e:’o_ 4.02 0.163 0.362 0.021
sh’ot) [3.98, 4.05] [0.158, 0.168] [0.350, 0.375] [0.020, 0.023]
Flamingo-
CXR - 0.205 - 0.101
LLaVA-Rad - 0.294 - 0.154
3.10 0.243 0.440 0.142
MIMIC-CXR Chest MAIRA-1 [3.07,3.14] [0.237, 0.248] [0.431,0.449] [0.137, 0.147]
external dataset - RS 200 3.07 0.239 0.448 0.138
y [3.04, 3.11] [0.233, 0.246] [0.440, 0.456] [0.134, 0.142]
Al del
(OI:;’S ¢ 3.07 0229 0.457 0.116
finetumned) [3.03,3.11] [0.221, 0.239] [0.445, 0.471] [0.111, 0.120]
2.74 0.300 0.466 0.160
MedVersa [2.69, 2.79] [0.291, 0.308] [0.453, 0.468] [0.153, 0.167]
MAIRA-2 2.59 0.359 0.513 0.243
13B [2.56,2.63] [0.356, 0.366] [0.510,0.521] [0.237, 0.249]

The model was evaluated on 5,000 chest and non-chest studies each from the internal held-out
test dataset and the prospective internal dataset using automated metrics of radiograph report

quality. Evaluation was also performed on the MIMIC-CXR test set, a dataset of chest

radiographs commonly used for model development and validation. Comparisons to recently
published models are presented. Note that CheXbert, RadGraph, and RadCliQ were developed
specifically for chest radiograph report evaluation.

" Indicates metric developed and validated for chest radiographs only.
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