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Abstract

IMPORTANCE Diagnostic imaging interpretation involves distilling multimodal clinical information
into text form, a task well-suited to augmentation by generative artificial intelligence (Al). However,
to our knowledge, impacts of Al-based draft radiological reporting remain unstudied in clinical
settings.

OBJECTIVE To prospectively evaluate the association of radiologist use of a workflow-integrated
generative model capable of providing draft radiological reports for plain radiographs across a
tertiary health care system with documentation efficiency, the clinical accuracy and textual quality of
final radiologist reports, and the model's potential for detecting unexpected, clinically significant
pneumothorax.

DESIGN, SETTING, AND PARTICIPANTS This prospective cohort study was conducted from
November 15, 2023, to April 24, 2024, at a tertiary care academic health system. The association
between use of the generative model and radiologist documentation efficiency was evaluated for
radiographs documented with model assistance compared with a baseline set of radiographs without
model use, matched by study type (chest or nonchest). Peer review was performed on model-
assisted interpretations. Flagging of pneumothorax requiring intervention was performed on
radiographs prospectively.

MAIN OUTCOMES AND MEASURES The primary outcomes were association of use of the
generative model with radiologist documentation efficiency, assessed by difference in
documentation time with and without model use using a linear mixed-effects model; for peer review
of model-assisted reports, the difference in Likert-scale ratings using a cumulative-link mixed model;
and for flagging pneumothorax requiring intervention, sensitivity and specificity.

RESULTS A total of 23 960 radiographs (11980 each with and without model use) were used to
analyze documentation efficiency. Interpretations with model assistance (mean [SE], 159.8 [27.0]
seconds) were faster than the baseline set of those without (mean [SE], 189.2 [36.2] seconds)

(P =.02), representing a 15.5% documentation efficiency increase. Peer review of 800 studies
showed no difference in clinical accuracy (x2 = 0.68; P = .41) or textual quality (x> = 3.62; P = .06)
between model-assisted interpretations and nonmodel interpretations. Moreover, the model flagged
studies containing a clinically significant, unexpected pneumothorax with a sensitivity of 72.7% and
specificity of 99.9% among 97 651 studies screened.

CONCLUSIONS AND RELEVANCE In this prospective cohort study of clinical use of a generative
model for draft radiological reporting, model use was associated with improved radiologist
documentation efficiency while maintaining clinical quality and demonstrated potential to detect
studies containing a pneumothorax requiring immediate intervention. This study suggests the
potential for radiologist and generative Al collaboration to improve clinical care delivery.
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Key Points

Question Is clinical use of artificial
intelligence (Al)-generated draft
radiograph reports associated with
documentation efficiency, clinical
accuracy, textual quality, and ability to
promptly detect pneumothorax

requiring intervention?

Findings In this cohort study, in 11980
model-assisted radiograph
interpretations in live clinical care,
model use was associated with a 15.5%
documentation efficiency improvement,
with no change in radiologist-evaluated
clinical accuracy or textual quality of
reports. Of 97 651 radiographs analyzed
for pneumothorax flagging, those
containing clinically actionable
pneumothorax were identified rapidly
with high accuracy.

Meaning The findings suggest the
potential for radiologist and generative
Al collaboration to improve clinical care
delivery.
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Introduction

Diagnostic imaging interpretation involves, in part, a multimodal distillation of clinical information from
unstructured imaging into textual form. Advances in generative artificial intelligence (Al) methods
bridging these modalities have the potential to accelerate the process of documenting clinical findings
within medical images by radiologists."* Considering increasing demand for radiological services* and
associated radiologist shortages worldwide,” efficiency improvement through generative Al adoption is
of great interest in broadening access to diagnostic imaging. Applicability of generative methods to
modeling image-text relationships for plain radiograph studies has recently been established using a
variety of adapted and bespoke vision-language models,®'*
dard benchmarks.'>'® However, studies to date have focused on chest radiographs exclusively, and
prospective clinical evaluations remain unpublished, to our knowledge 3

In this study, we considered 2 avenues for radiologist workflow augmentation by generative Al.
First, Al-generated draft reports may facilitate more timely information consolidation.’"" A sufficiently
accurate Al draft can serve as a starting point for documentation so that the radiologist need not type or

with ever-improving outcomes on stan-

dictate from scratch or from a predefined template, much as an attending radiologist verifies and edits a
trainee report. Second, an Al draft contains language remarking on the severity and chronicity of find-
ings, enabling identification of studies warranting immediate radiologist attention more reliably than
classification-based strategies."” Of the immediately life-threatening pathologies reliably identifiable on
radiography, pneumothorax is relatively common across clinical settings,'® making it a promising proof-
of-concept target for generative Al-based prioritization.™

We performed a prospective clinical evaluation (Figure 1) of these impacts of a generative Al
model (Figure 2) capable of producing draft radiology reports for all plain radiographs, which was
implemented within the live clinical workflow at our institution. We studied whether use of model-
generated drafts was associated with radiologist documentation time and quantified the clinical
accuracy and textual quality of final radiologist reports by peer review, comparing outcomes with
baseline performance prior to model implementation. We also prospectively evaluated the accuracy
of model-generated reports for flagging clinically significant, unexpected pneumothoraxes requiring
physician intervention.

Methods

Model Inference and Deployment
The generative model used in this prospective cohort study was a multimodal encoder-decoder

transformer-based model®° jointly conditioned on text and images, trained using an institutional

Figure 1. Overview of Model Development and Deployment
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A generative Al model capable of producing radiograph report text from input images an academic hospital system. This model was then integrated into the live clinical
and clinical data (reason for examination, procedure type, comparison information, and workflow across the hospital system.
radiologist name) was developed using data from the electronic health record (EHR) of
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dataset to produce free-text radiology reports (Figure 2). Architecture and training details are
provided in eMethods 1to 5 in Supplement 1. Model inference was seamlessly integrated with the
institutional electronic health record (EHR) software (Epic; Epic Systems) and reporting software
(PowerScribe; Nuance Communications), minimizing disruptions to established clinical routines
(Figure 1and eMethods 6 in Supplement 1). In the typical radiology workflow, imaging data from
patients enters the EHR and is sent to radiology reporting software, used by radiologists to view
imaging, review clinical history, and document interpretations (typically via voice dictation). These
finalized reports are then used by other clinicians to guide clinical decision-making. In the model's
clinical integration, a server receives imaging and clinical data from the EHR as image acquisitions
complete, performs inference to generate draft Al reports, and logs all activity to a monitoring
database. The draft Al report is made available as custom fields included within a template selectable
within the radiology reporting software as soon as inference completes, within seconds of image
acquisition. Thus, radiologists may document reports by verifying and editing these Al-generated
reports within their normal workflow. All model outputs, Al draft use, finalized reports, and
documentation timing data are logged to the monitoring database. During the study period, the
model was available via a PowerScribe template to a limited set of radiologists as part of a phased
rollout by practice location and imaging section across the health system. Otherwise, radiologist
workflows were unchanged. The study protocol was approved by the Western-Copernicus Group
Institutional Review Board, with a waiver of informed consent given the minimal risk of data
collection. The study followed the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline. Reporting was in accordance with the Checklist for
Avrtificial Intelligence in Medical Imaging (CLAIM).*'

Study Population and Design

The study cohorts for this prospective cohort study were derived from radiographs obtained at our
institution, a 12-hospital tertiary care academic health system, between November 15, 2023, and
April 24, 2024, for which the model generated an Al draft report. To assess the association of model
use with documentation efficiency, radiologists who interpreted at least 10 studies without trainee
involvement using the model-generated draft were identified. A baseline dataset matched by chest

Figure 2. Model Design lllustration
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model, receives image features generated by the image encoder, a base-sized 86 million right knee.
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or nonchest radiograph type was identified from the most recent consecutive studies interpreted by
each radiologist without trainee involvement before their first model use. Radiologists without model
use served as a control group, selected by randomly matching each model user to a radiologist within
the same imaging section (eg, thoracic, emergency) matched by study count.

Studies for the peer review analysis (Box) were randomly sampled from the documentation
efficiency dataset through March 14, 2024, with equal representation among radiologists following
the power analysis described in eMethods 7 in Supplement 1. Raters were blinded to the model use
status and reading radiologist for each study and did not review their own studies. The peer review
platform is described in eMethods 8 in Supplement 1; eFigure 1in Supplement 1 depicts the rating
application.

Flagging of clinically significant, unexpected pneumothorax used all studies analyzed by the
prioritization system (detailed in eMethods 9 and eTable 1in Supplement 1), which was live from
February 5 to April 24, 2024, in a shadow deployment that ran in real time without surfacing alerts to
clinicians. This system aimed to identify studies containing emergent pneumothoraxes in patients
with low pretest probability (eg, excluding patients with recent thoracic surgery and small, clinically
inconsequential pneumothoraxes).

Statistical Analysis

To examine radiologist documentation time, a linear mixed-effects model (Ime4 package in R, version
1.1-33 [R Project for Statistical Computing]) was fit to the data with repeated measures (fixed effects)
of procedure type (nonchest, chest) and model use (before and after model implementation) with
the random effect of radiologist. Significance testing for main effect estimates and interactions was
completed using the car package in R, version 3.1-2. Only studies documented without trainee
involvement (eg, drafting of a preliminary report by a resident physician) were considered for
analysis. As a sensitivity analysis to investigate the influence of individual radiologists on the overall
effect estimates, successive linear mixed-effects models were fit to the dataset, each excluding 1
radiologist. Secondary statistical analyses were performed to investigate factors associated with
documentation time changes with model use (eMethods 10 in Supplement 1).

Likert scores between model and nonmodel reports were compared using a cumulative-link
mixed model from the ordinal (version 2022.11-16) package in R fit with main effects of procedure
type and model use with random effects of study and rater. Significance testing for main effect
estimates and interactions was completed using the RVAideMemoire package in R, version 0.9-83.
The signing radiologist was initially used as a covariate but was removed after not being significant.
Where applicable, the Akaike information criterion and bayesian information criterion were used to
determine model selection. For all analyses, if a significant main effect estimate was found, post hoc
analyses were completed using the emmeans (version 1.8.6) package in R with Bonferroni-Holm
corrections. The a level was set to P = .05 to determine significance. All P values were 2-sided and
are reported with Bonferroni-Holm correction where applicable. Data are presented as estimated
marginal means with SE or effect estimates with margin of error. RadGraph,?2 which extracts clinical
entities and relations from chest radiograph reports, was used to quantify clinical information within
reports as a proxy for report complexity and to calculate RadGraph F1'° scores between draft and
edited reports. Word error rate was calculated using the torchmetrics module, version 1.4.2
(Lightning Al). Power analysis and subgroup analysis by pathology category were performed as
described in eMethods 7 and 10, respectively, in Supplement 1. The proportions of reports with and
without an addendum?3 (identified using the PowerScribe database) were compared before and
after model deployment using a x? test.

Results

The datasets for study of documentation efficiency impact (23 960 radiograph studies from 14 460
unique patients), peer review (800 studies from 800 unique patients), and pneumothorax flagging

Box. Peer Review Rating Scales

Likert Scale for Clinical Quality

1. Disagree with the majority of
the report.

2. Disagree with critical findings; agree
with noncritical findings.?

3. Agree with critical findings; disagree
with noncritical findings.?

4. All findings are appropriately
reported.

Likert Scale for Text Quality

1. Rewrite needed.

2. Minor wording or formatting changes
needed (eg, grammar, organization).

3. Report uses appropriate word choice
and formatting.

@ Acritical finding was defined to be any
finding that would change the immediate
clinical management of the patient if
reported incorrectly, in the radiologist's
judgment.
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(97 651 studies from 73 881 unique patients) were derived from 299 164 radiographs at our
institution. Mean (SD) patient age for the documentation efficiency impact studies was 59.6 (17.5)
years; 11689 (48.8%) patients were female, 12 268 (51.2%) were male, and 3 (<0.1%) were other
gender. For peer review studies, mean (SD) patient age was 57.5 (19.6) years; 457 patients (57.1%)
were female, and 343 (42.9%) were male. For studies of pneumothorax flagging, mean (SD) patient
age was 60.5 (18.1) years; 54 088 (55.4%) were female, 43 535 (44.6%) were male, 19 (<0.1%) were
other gender, and 9 (<0.1%) had unknown gender. Demographic information is presented in eTable 2
in Supplement 1.

Association With Radiologist Documentation Efficiency

Use of the model draft was associated with more efficient documentation. Of the 11980 studies
interpreted with the model, 9791 (81.7%) were chest and 2189 (18.3%) were nonchest radiographs.
The distribution of included radiographs is detailed in eFigure 2 and eTable 3 in Supplement 1.
Inference completed in a median of 3 seconds (IQR, 2-4 seconds). The chest radiographs were
interpreted by 12 radiologists reading a median of 202 studies (IQR, 49-938 studies) and the
nonchest radiographs by 15 radiologists reading a median of 60 studies (IQR, 28-122 studies)
(eTable 4 in Supplement 1). The premodel matched set comprised 11 980 studies mirroring the model
use set in chest and nonchest composition and radiologist representation. No significant differences
in anatomy representation were observed between the model use and premodel sets. The median
word error rate of model-generated compared with final reports, measured as the ratio of
substitutions, additions, and deletions to generated word count, was 0.31 (IQR, 0.16-0.60) for chest
and 0.63 (IQR, 0.40-0.85) for nonchest studies. Examples of edited model reports are given in
eTable 5in Supplement 1.

There was a significant association between model use and documentation time (x* = 5.36;

P =.02), with model-assisted documentation times (mean [SE] of 159.8 [27.0] seconds) being
significantly faster than for nonmodel studies (mean [SE] of 189.2 [36.2] seconds) by a mean of
29.4 (margin of error [ME], 21.5) seconds (z = 2.29; P = .02), corresponding to a 15.5% increase
in per-study documentation efficiency (Figure 3). There was also a significant association
between procedure type (x2 = 20.98; P < .001) and documentation time, with documentation
time for nonchest studies being significantly greater (by a mean [ME] of 33.3 [14.1] seconds;

z =4.63; P <.001) than for chest studies. The procedure type by model interaction was not
significant (x? = 0.64; P = 43), indicating that no evidence of the procedure type modifying the
association of model use with documentation time was found. In the control group comprising
10 897 studies each before and after model implementation, this analysis found no evidence for
change in documentation efficiency for radiologists with vs without model use (eAppendix 1in
Supplement 1).

Documentation times across pathology and anatomy subgroups are detailed in eFigure 3 in
Supplement 1, highlighting efficiency benefits of model use across a wide range of clinical
abnormalities. Moreover, in the sensitivity analysis, all splits showed a significant association
between model use and improved documentation time, with median documentation time
improvement of 30.4 seconds (IQR, 28.3-31.5 seconds) with model use. Thus, removing 1radiologist
did not alter the overall association of Al model use with radiologist documentation time. Results
from analysis of factors associated with documentation efficiency gain with model use are presented
in eAppendix 2 in Supplement 1.

In addition, as a measure of documentation quality, we investigated the rate at which addenda
used to rectify reporting errors were made to reports before and after model implementation. In the
11980 premodel reports, addenda were made in 16 (0.13%), while in the 11980 model-assisted
reports, addenda were made in 17 (0.14%) (x> = 0.03; P = .86), suggesting unchanged radiograph
interpretation quality.
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Peer Review of Model-Assisted Reports

The peer review analysis included 2 sets (chest and nonchest) of 400 studies, each comprising 200
premodel studies and 200 model use studies. Regression output tables are provided in eTable 6 in
Supplement 1and information regarding raters in eAppendix 3 in Supplement 1.

Regarding clinical accuracy (Figure 4 and Box), there was no association between model use
and clinical accuracy (x* = 0.68; P = 41), indicating that there was no difference in clinical quality of
reports documented with or without the model. There was a significant association with study type
(X2 = 11.54; P < .001), with post hoc tests revealing that chest studies were rated higher than
nonchest studies by a mean (ME) of 0.65 (0.37) points on a scale of 1to 4, with 4 indicating all
findings were appropriately reported (z = 3.38; P < .001). There was no interaction between model
use and study type (x2 = 1.75; P = .19). The proportion of studies with unanimous agreement was
comparable to a previously reported value®* at 61.4% (chest, 64.5%; nonchest, 58.2%), with a
Kendall W of 0.37 (n = 4 raters; X2 = 321.82; df = 220; P < .001) and 0.41 (n = 4 raters; x* = 159.42;
df = 98; P < .01) for chest and nonchest studies, respectively, indicating fair agreement among raters.

On secondary analysis, model-assisted and nonmodel reports did not differ by error type
(context, extraneous content, or omission) identified by reviewing radiologists. No model use-by-
procedure type interactions were observed for any error type. Moreover, clinical accuracy scores did
not differ significantly between ratings of model and nonmodel studies for any pathology category.
The pathology distribution is given in eFigure 2 in Supplement 1.

Regarding textual quality (Figure 4 and Box), there was no association with model use
(x? = 3.62; P = .06), indicating no difference in textual quality in reports documented with and
without model use. Full cumulative-link mixed model outputs are described in eAppendix 4 in
Supplement 1. The proportion of studies with unanimous agreement of text scores was 76.8% (chest,
83.5%; nonchest, 70.0%), with a Kendall W of 0.29 (n = 4 raters; x> = 250.10; df = 219; P = .07) and

Figure 3. Radiologist Documentation Times for Interpretations With and Without the Model
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0.34 (n = 4 raters; X2 = 130.10; df = 98; P = .01) for chest and nonchest studies, respectively,
indicating fair agreement among raters.

Flagging Clinically Significant, Unexpected Pneumothorax

During the prioritization system shadow deployment period, 97 651 studies for which the model
generated a report were screened (eFigures 4 and 6 in Supplement 1). Of these, 78 were flagged in
real time by the prioritization system as containing a pneumothorax warranting immediate attention;
56 (71.8%) were true pneumothoraxes when cross-referenced with the final interpreting radiologist's
report. Furthermore, 30 (38.5%) resulted in calls to the clinical team ordering the imaging study.
Priority flags were available in a median of 24.0 seconds (IQR, 21.3-44.8 seconds) after study
completion, while radiologist notifications took place at a median of 24.5 minutes (IQR,

14.6-56.0 minutes).

On retrospective examination of the 97 651 final radiologist-documented reports, 33 studies
contained a pneumothorax, resulted in clinical team notification, and met prioritization criteria, of
which 24 (72.7%) had been flagged by the aforementioned live prioritization system. Thus, the
prioritization system had a sensitivity of 72.7% and specificity of 99.9% for detection of unexpected
pneumothoraxes warranting clinical team notification. Of the remaining 9 studies not flagged by the
system (27.3%), all but 1 were qualified as “small,” “suspected,” or “uncertain” by the radiologist,
whereas the model-generated report stated that there was no significant pneumothorax. Of note, 6
studies (20.0%) had been flagged by the system and resulted in calls to the clinical team but did not
meet prioritization criteria on retrospective examination; this was due to delayed availability of
patient location information and prior imaging interpretations in the EHR.

Figure 4. Distribution of Peer-Review Evaluation Scores for Radiograph Interpretations
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Evaluation by Automated Metrics of Radiograph Quality

Model performance was benchmarked on internal and external test sets using automated metrics,
demonstrating performance comparable to the recent state of the art (eTable 7 in Supplement 1).
Ablation and scaling studies (eAppendix 5 and eFigure 5 in Supplement 1) demonstrated the utility of
the tiling and clinical prompting as well as the potential value of increasing model size.

Discussion

This study described, for the first time to our knowledge, prospective evaluation of a generative Al
model for imaging interpretation in a live radiology clinical practice setting. We found a 15.5%
documentation efficiency benefit with no decrease in clinical accuracy on peer review, representing
a net time savings of over 63 documentation hours over the study period, or a reduction from
roughly 79 to 67 radiologist shifts required to provide coverage. More efficient radiologist
documentation may alleviate shortfalls in imaging access® while reducing burnout.?® Notably,
integration of new tools warrants careful attention to minimize workflow fragmentation or alert
fatigue.2® In this study, an Al model was seamlessly integrated into an existing radiology workflow
and mirrored the established clinical practice of editing trainee-produced draft reports, maximizing
potential clinician benefit.

Most studies examining Al-assisted radiograph interpretation in preclinical?”-2° and clinical>®
settings have used classification-based models, which provide disjoint outputs less applicable to the
holistic review that underlies report documentation. While studies have demonstrated accuracy
benefits of radiologist-Al collaboration, particularly for less experienced clinicians,’>°
heterogeneity in response has been recently described.' Nonetheless, assistance by generative
models in particular remains understudied. A recent study found radiologist preference for
radiologist reports over edited Al reports on the MIMIC-CXR dataset>? but not an internal dataset,

substantial

highlighting that both model error and clinical practice differences contribute to clinician
disagreement.® Further study of Al collaboration in clinical settings is needed to inform continued
optimization of clinical deployments.

We also provided a proof-of-concept framework for extension of draft Al reporting to
prioritization of critical studies, demonstrating high sensitivity and specificity for detection of
clinically actionable pneumothorax. Although most flagged pneumothoraxes were noted by
radiologists within 30 minutes, the system identified several preventable cases of delayed care.
Notable examples included a patient with a large pneumothorax who was discharged from the
emergency department based on a preliminary interpretation that missed this finding and then was
called back 6 hours later after an attending radiologist's overread and another patient who was
undergoing inpatient workup for pneumonia who had a radiographically evident pneumothorax that
was only noted by the care team following an acute oxygen desaturation event 11 hours after imaging
acquisition.

Existing commercially available systems to identify pneumothoraxes on radiography use
classification methods directly on imaging data, achieving sensitivities ranging from 63% to 90% and
specificities ranging from 98% to 100%.'9>33% However, they fail to consider relevant clinical
context in report text reflecting the necessity of intervention, such as severity and chest tube
presence, which may lead to extraneous alerts for cases of known or clinically insignificant
pneumothorax. In this study, analysis of model-generated report text enabled the prioritization
system to produce just over 1alert per day, showing the potential of generative Al-based
prioritization to safeguard against delayed care while minimizing alert fatigue. Further evaluation of
performance and extension to other clinical findings may lay the groundwork for regulatory approval
and broader adoption.

To date, generative radiograph models have exclusively studied thoracic pathology,® " while
our model produces reports for radiographs covering all anatomy. Documentation efficiency in this
study improved for chest and musculoskeletal radiographs despite the relatively higher word error
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rate for nonchest reports, evidencing the clinical utility of the Al model throughout radiograph
modalities. Considering established challenges of quantifying report text quality'® and a lack of
datasets pairing musculoskeletal radiographs with reports,>” continued development and
evaluation of generative models tailored to musculoskeletal radiography will rely on efforts to
translate datasets and metrics available for chest radiographs while determining modeling practices
that best account for differences between the modalities.

Limitations

This study has limitations. Although our institution serves a diverse patient population, the
radiographs and radiologists studied may not be representative of other populations. Additionally,
the repeated-measures study design used radiologists as their own controls because direct
comparison between an edited Al draft and an independently documented draft was not possible; a
study design involving double reading of radiographs may mitigate this. Continued longitudinal study
of model use is needed to characterize potential performance drift and investigate the translation of
per-study efficiency gains to longer-term productivity changes and factors such as burnout. Further
incorporation of clinical context and extended comparison studies may improve model performance.
Finally, due to this study's nonrandomized nature, further experimental evidence is needed to build
on its preliminary findings to establish generalizable results regarding draft reporting by Al.

Conclusions

In this prospective cohort study of clinical use of a generative model for draft radiological reporting,
model use was associated with improved radiologist documentation efficiency while maintaining
clinical quality and, moreover, demonstrated potential to detect studies containing a pneumothorax
requiring immediate intervention. Our results provide initial evidence for benefits of draft reporting
using generative Al tools and a framework by which clinician-Al collaboration may effectively
integrate into and improve existing clinical workflows.
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